

Preliminary Design Review: ASOS

Automated Screw Organization System

Team 20 Jordon Balskus, Jordan Gyaltsen, Andrew McGrath, Rajesh Shahi

October 15, 2018 Advisor: Professor Eslami

Outline

- 1. Problem Statement
- 2. System Specifications
- 3. Design System
- 4. Team Roles
- 5. MDR Deliverables

Problem Statement

- There are ~17,000 machines shops across the United states that will inevitably have to deal with one problem, time after time. Unsorted screws.
- Current solution to dealing with a bucket of random screws
 - Throw them out or manually spend hours checking the diameter, thread spacing, and, length for possibly several different types of screws by measurement or individual threading holes.
 - Throwing out screws contributes to growing trash problem that our planet faces and is economically wasteful

Design Alternatives (Existing Products)

- LS52-100 SCREW & CONNECTOR BAG
 - Heavy and inconvenient to carry around
 - Have to remember which screw is in which pocket
 - No guarantee of sorted screw

- PS 1500
 - Very expensive (~ \$1,013 \$ 2,000)
 - Not portable

Design Alternatives (Existing Products)

Ray's Screw Sorting Machine

- Inefficient, user has to put the screw one by one
- Limited options
- Very noisy, unpleasant to the user

Characteristics Of A Screw

Imperial screw Labeling : # - TC x L

Diameter

- Distance through the edges of one thread
- D = (# * 0.013) + 0.06

Length

L = Distance from bottom of head to bottom of screw

Characteristics Of A Screw

Thread Count

• Number of threads per square inch

Head Type

Same screws with different heads

Proposed Solution

- Three tiered system to separate, identify, & sort the different types of commonly used screws
- Utilize distinguishable characteristics of screws to identify and sort limited number of screws
- Compact & affordable design compatible for all small & mid-level machine shops

Requirement Analysis: Specifications

- Screw length between 6mm & 100mm
 - limit scope of mechanical complications
 - works for most screws in machine shop
- Sort between 5-10 different types of screws at a time
 - Excess screws placed together then resorted
- Real-Time interface communication
 - Screws easily identified once sorted

Requirement Analysis: Specifications

- Hold up to 100-200 unsorted screws
 - limit size of holding container mechanism
- Identify screws accurately
- Sort screws with high accuracy in a reasonable amount of time
- Complete sorting as fast as possible
 - Speed not high priority
 - Accuracy is key

Block Diagram

UMassAmherst

Individualizer

- Requirements
 - Able to separate and move screws into loading position one at a time.
 - Takes input from backend system letting it know when to stop and resume loading screws.
 - Response time under 100 ms
- Implementation
 - Vibratory bowl feeder
 - Can place a pile of screws into a bowl which uses vibrations to move screws one by one into a position to be scanned accurately

	Individualizer	
	Screw Separation	Feedback Control
Holding area		

Placement Mechanism

- Camera will take an image of the screw
 - HD Camera / Webcam
- Symmetric placement
 - All the screws are placed in same place of the camera
- Forwarding Mechanism
 - Moves screws to the sorting mechanism
- Backend Communication
 - Communicates with database

Backend - CPU and Image Processing

- Image processed via a Raspberry Pi
 - Running OpenCV Library w/ Python
 - Linux operating system
- Image database built as screws are processed
 - Screws compared to previous ones
 - Will account for 5-10 different screws

Backend		
Image Processing Hub	Database Storage	
Sorting Communication	Interface	
Power Supply		

Mechanical Sorting

- Receive correct sorting location from backend
- Align containers to receive screws
 - Circular Shifting
 - Multiple Levels
- Measure level of container to prevent overfill
- Containers store sorted screws
 - 5-10 for separated screws
 - Single bin for miscellaneous screws to be resorted

System Summary

- Single screw separated from an assortment of of unsorted screws
- Screw is then placed in front of camera and scanned
- Image is taken to backend and compared to screws that have already been seen
- Backend deciphers where screw should be and sends assessment to sorting mechanism
- Screw is moved into the correct sorted bin

Team Roles (Technical)

- Hardware Leads: Jordan Gyaltsen & Rajesh Shahi
 - Identify solutions to mechanical problems
 - Implement cost-effectively
- Backend Leads: Andrew McGrath & Jordon Balskus
 - Decipher computerized system to handle sorting
 - Create real-time communication with mechanisms

Team Roles (Administrative)

- Communication Manager: Rajesh Shahi
 - Handle communication with outside resources
- Technical Manager: Jordan Gyaltsen
 - Ensure technical components are being completed as planned
- Team Manager : Andrew McGrath
 - Schedule meeting times & coordinate reports
- Financial Manager: Jordon Balskus
 - Devise foreseen budget & handle ordering parts

Prototype Budget

- Total \$465
- Testing Screws \$20
- Enclosure Materials \$125
- Primary Sorting Motors/Mechanical Devices \$200
- Camera \$40
- Raspberry Pi \$40
- All image processing software FREE
- Interface
 - LCD Screen \$40

Project Timeline

2018

Backend Development Mechanical Sorting **Final Testing** Individualizer Oct Nov Feb Jul 2019 September Dec Jan Mar Apr May June <u>CDR</u> FPR Demo Semester Start MDR Project End PDR

UMassAmherst

Proposed MDR Deliverables

- Demonstration of preliminary image processing
 - Have basic system that takes image of screw and imports it to our software suite
 - Demonstrate that we are able to detect screw length and diameter
- Demonstration of final screw placement
 - After being scanned and identified, a few screws will be placed into a designated bins.
 - Demonstrate the working of the mechanical system to complete sorting process.

Questions? Comments? Concerns?

