Final Product Review

Team 16 April 17, 2019

Department of Electrical and Computer Engineering

Advisor: Professor Ganz

Mapper

Marcus Le EE

Derek Sun CSE

Department of Electrical and Computer Engineering

Advisor: Professor Ganz

Goal

- Provide homeowners or real estate agents with the ability to post an updated model of the interior of their house
- Potential integration with virtual reality tours
 - Similar to an open house
 - Cater toward the younger, more technologically adept generation that will inevitably dominate the future real estate market

Method of Resolution

- A robot that utilizes LIDAR sensors to remotely navigate around the surrounding environment and produce a 3D layout of an indoor area
- A camera mounted on the robot will allow for live video feed to assist in user navigation

Requirements Analysis: Specifications

- Speed of up to 3mph
- Effective detection range of 15ft
- Approximately 12 pounds
- Approximately 2 hours of battery life
- Durable enough to withstand minor collisions

Requirements Analysis: Inputs and Outputs

- Input
 - LIDAR sensor data
 - Inertial measurement unit data
 - Camera data
 - User navigation control
- Output
 - Live video feed
 - Map data

System Overview

Block Diagram

Proposed FPR Deliverables

Mapper completed

- Wireless maneuverability of robot
 - User controls sent through Wi-Fi to Mapper
 - LIDAR and IMU sensor data relayed back to PC
 - Camera feed sent back to PC
- 3D SLAM
 - 2D map generated and viewable in Rviz
 - Point cloud viewable in Meshlab
 - Mesh generated from point cloud
- Component integration
 - Functional PCB integrated into Mapper
 - All hardware and circuitry fits neatly in Mapper

Actual FPR Deliverables

- Mapper completed
 - Wireless maneuverability of robot
 - User controls sent through Wi-Fi to Mapper
 - LIDAR and IMU sensor data relayed back to PC
 - Camera feed sent back to PC
- 3D SLAM
 - 2D map generated and viewable in Rviz
 - Point cloud viewable in Meshlab
 - Mesh generated from point cloud
- Component integration
 - Functional PCB integrated into Mapper
 - All hardware and circuitry fits neatly in Mapper

FPR Responsibilities

- Kelvin (ME)
 - Optimize pan & tilt system, finalize robot chassis, design phone mount, mount all components
- Marcus (EE)
 - Create PCB, Wi-Fi robot control, integrate all components
- Derek (CSE)
 - 3D SLAM, Wi-Fi data transfer, Wi-Fi video feed, PC application
- Bryan (CSE)
 - 3D SLAM, Wi-Fi robot control, PC application

FPR Deliverable (Wireless Maneuverability)

User controls sent through Wi-Fi to Mapper

- NodeMCU reads UDP messages sent from PC application
- PC application \rightarrow NodeMCU \rightarrow motors

LIDAR and IMU sensor data relayed back to PC

- Raspberry Pi 3 B+ running Ubuntu Server 18.04 with ROS
- ROS master (PC) launches nodes on remote machine (RPi)
- Raspberry Pi publishes ROS /scan and /imu to master
- Raspberry Pi 3 $B \rightarrow PC \rightarrow SLAM$

Camera feed sent back to PC

- Phone's Android application sends captured frames to PC application
- Phone \rightarrow Android application \rightarrow PC application

FPR Deliverable (3D SLAM)

- Rviz
 - Generated 2D map
 - Robot trajectory/path
- Meshlab
 - Generated point cloud
 - Reconstructed mesh

FPR Deliverable (Component Integration)

Functional PCB integrated into Mapper

- H-bridge PCB created using Altium Designer
- Connects to the NodeMCU to send signals to the wheel motors

Connecting subsystems

- LIDAR Sensor and IMU data is sent through the Pi to the laptop
- Laptop able to send controls over to the NodeMCU
- Camera feedback displayed on the laptop

All hardware and circuitry fits neatly in Mapper

- Top: LIDAR Sensor, Servos, IMU
- Inside: H-bridge, NodeMCU, Maestro servos controller, batteries
- Under: Raspberry Pi, batteries

What we plan to bring to Demo Day

- Completed Mapper on display
- Video that shows Mapper fabricating 3D model of a room
 - Controller for the robot
 - Video feedback
 - Current map that is being created
 - Marker that shows where the robot is relative to the room
 - 3D output mesh layout

Costs

- RP LIDAR A2 \$319.95
- SparkFun 9 DoF IMU \$34.95
 - Mapper Chassis \$26.50
- Micro Maestro 6-Channel Servos Controller \$19.95
 - HiLetgo ESP8266 NodeMCU \$8.39
 - Custom PCB \$27.56
 - Raspberry Pi 3 Model B+ \$38.10
 - MicroSD \$11.99
 - S3362-ND Connectors \$5.59

Total \$492.98

Demo

Questions?