AS

Comprehensive Design Review

Team 16 February 25, 2019

Department of Electrical and Computer Engineering

Advisor: Professor Ganz

Mapper

Marcus Le EE

Derek Sun CSE

Department of Electrical and Computer Engineering

Advisor: Professor Ganz

Background and Motivation

- In 2017, homeowners found their new houses through:
 - Internet 51%
 - Real Estate Agents 30%
 - Yard/Open House signs 7%
 - Other 12%

https://www.nar.realtor/research-and-statistics/quick-real-estate-statistics

Goal

- Provide homeowners or real estate agents with the ability to post an updated model of the interior of their house
- Potential integration with virtual reality tours
 - Similar to an open house
 - Cater toward the younger, more technologically adept generation that will inevitably dominate the future real estate market

Method of Resolution

- A robot that utilizes LIDAR sensors to remotely navigate around the surrounding environment and produce a 3D layout of an indoor area
- A camera mounted on the robot will allow for live video feed to assist in user navigation

Requirements Analysis: Specifications

- Speed of up to 3mph
- Effective detection range of 15ft
- Approximately 12 pounds
- Approximately 2 hours of battery life
- Durable enough to withstand minor collisions

Requirements Analysis: Inputs and Outputs

- Input
 - LIDAR sensor data
 - Inertial measurement unit data
 - Camera data
 - User navigation control
- Output
 - Live video feed
 - Map data

System Overview

Block Diagram

Proposed CDR Deliverables and Responsibilities

- 3D SLAM
 - Simultaneous LIDAR and IMU data input
 - Pan & tilt calibration and integration
- Functional robot
 - Mount motors to our custom robot
 - Integrate custom PCB
- Wi-Fi connectivity between robot and PC
 - Able to send navigation input to robot through Wi-Fi

Responsibilities

- Kelvin (ME)
 - Ensure functional robot, mount SLAM components, pan & tilt system
- Marcus (EE)
 - Create PCB, ensure functional robot, pan & tilt system, Wi-Fi data transfer
- Derek (CSE) & Bryan (CSE)
 - Programming 2D SLAM \rightarrow 3D SLAM, Wi-Fi data transfer

Design Changes

Custom Arduino PCB \rightarrow H-Bridge PCB

- Originally, Arduino PCB would handle Wi-Fi signals from the ESP8266 and send signals to the H-bridge accordingly
- It turns out that the ESP8266 has a development board that can do this exact thing
 - Eliminates the need for an Arduino
 - Creates a more compact design by reducing redundant and unnecessary hardware

Will now use a custom PCB as an H-Bridge to control signals sent to motor

Actual CDR Deliverables and Responsibilities

- 3D SLAM
 - Simultaneous LIDAR and IMU data input
 - Pan & tilt calibration and integration
 - Functional robot
 - Mount motors to our custom robot
 - Integrate custom PCB
 - Wi-Fi connectivity between robot and PC
 - Able to send navigation input to robot through Wi-Fi

Responsibilities

- Kelvin (ME)
 - Ensure functional robot, mount SLAM components, pan & tilt system
- Marcus (EE)
 - Create PCB, ensure functional robot, pan & tilt system, Wi-Fi data transfer
- Derek (CSE) & Bryan (CSE)
 - Programming 2D SLAM \rightarrow 3D SLAM, Wi-Fi data transfer

Block Diagram

CDR Deliverable (Robot)

- Chassis
 - Contains motors, circuit and battery to navigate Mapper
- 3D mounts
 - Servos mount custom-made to house servos motor
 - LIDAR mount custom-made to house IMU and LIDAR
- Lid
 - Servos system with 3D mounts installed on top
 - Holds LIDAR in place

Block Diagram

CDR Deliverable (Wi-Fi Connectivity)

- Configure a network
- ESP chip, auto connects to the network on startup
- Computer connects to the same network
- PC Application can then communicate through the network to ESP8266
- Able to send robot movement controls through PC application to ESP8266
- Accepts WASD keyboard input
 - W = Forwards
 - A = Rotate left
 - S = Backwards
 - D = Rotate right

CDR Deliverable (Wi-Fi Connectivity)

- On startup the ESP8266 searches for the network pre configured within the RC_Mapper file and establishes a connection
- PC client sends UDP messages to the IP defined in the UI through port 4320
- Robot movement speeds can be changed using the drive and turn speed parameters

🖳 Mapper		—		×
	IP 192.168.0.	22		
Drive Speed	650 🜲	Turn Speed	900	A
	Forward			
	Left (A)	Right (D))	
	Backwar	u (S)		

CDR Deliverable (Wi-Fi Connectivity)

- Wi-Fi connectivity between robot and PC
 Able to send navigation input to robot through Wi-Fi
 - Next steps:
 - Send LIDAR and IMU data through ESP8266 development board to PC
 - Transition from Arduino libraries to C

Block Diagram

CDR Deliverable (3D SLAM)

RPLIDAR A2 \rightarrow rplidar ROS package

- read RPLIDAR raw scan result using RPLIDAR's SDK
- convert to ROS /scan messages
- record /scan messages to a rosbag

SparkFun 9DoF Razor IMU → razor_imu_9dof ROS package

- read IMU sensor data
- convert to ROS /imu messages
- record /imu messages to a rosbag

CDR Deliverable (3D SLAM)

ROS /scan and /imu messages \rightarrow Google Cartographer node

- node processes data with Cartographer SLAM algorithm
- scan matching and IMU data to generate local submaps
- local submaps merged to global map
- 2D SLAM while gathering points in all directions for 3D map

Output

- Rviz
 - Live point cloud
 - Local and global map
- Meshlab
 - Full point cloud
 - Generated mesh

CDR Deliverable (3D SLAM)

Open Source

- Cartographer libraries
- ROS packages/nodes
- RPLIDAR A2 SDK

Our contributions

- LIDAR ROS integration
- IMU calibration and ROS integration
- LIDAR and IMU compatibility with ROS Cartographer package
- ROS configurations

Demo

What we plan to bring to FPR

Mapper completed

- Wireless maneuverability of robot
 - User controls sent through Wi-Fi to Mapper
 - LIDAR and IMU sensor data relayed back to PC
 - Camera feed sent back to PC
- 3D SLAM
 - 2D map generated and viewable in Rviz
 - Point cloud viewable in Meshlab
 - Mesh generated from point cloud
- Component integration
 - Functional PCB integrated into Mapper
 - All hardware and circuitry fits neatly in Mapper

What we plan to bring to Demo Day

- Completed Mapper on display
- Video that shows Mapper fabricating 3D model of a room
 - Perspective of robot
 - Current map that is being created
 - Marker that shows where the robot is relative to the room

Schedule

													_								
	7-Dec	14-Dec	21-Dec	28-Dec	4-Jan	11-Jan	18-Jan	25-Jan	1-Feb	8-Feb	15-Feb	22-Feb	1-Mar	8-Mar	15-Mar	22-Mar	29-Mar	5-Apr	12-Apr	19-Apr	26-Apr
MDR presentation																					
Obtain WiFi module																					
Obtain 3.3V, 12V power supply																					
Obtain camera																					
3D SLAM																					
3D print LIDAR mount																					
Create PCB																					
Allow communication from PC to PCB																					
Make robot chassis																					
Install motor components to robot																					
Install Servos motors																					
Refine robot movement capabilities																					
Integrate IMU data																					
CDR powerpoint creation																					
CDR presentation																					
Integrating Components																					
Test/Refine Project																					
FPR powerpoint creation																					
FPR presentation																					
Demo Day																					

Marcus

Kelvin Derek+Bryan

All

Questions?