

Insight Power Smart Outlet
Brendon Burke, CSE, Mark Chisholm, CSE, Garrett Olson, CSE, and Kriss Strikis, CSE

Abstract—Home automation today consists of numerous
smart devices and accessories that enable intelligent power
management, scheduling and other automated and
semi-automated control. These devices, however, currently
require a manual setup process which does not scale well to
whole-home implementation. Different types of home appliances
can have distinctly different power usage profiles, and because
smart outlets have access to these waveforms, classification of
different plugged in device types is possible. In this paper, we
describe our work toward implementing a smart outlet with the
ability to automatically distinguish plugged in lights from other
kinds of devices.

I. INTRODUCTION

Homeowners today can buy multiple kinds of smart
accessories. In particular, smart power outlets allow users to
remotely monitor power usage and to remotely switch these
devices on and off, either manually or part of automated
policies. These include the Amazon Smart Plug[1] and
Belkin’s Wemo Insight Smart Plug with Energy
Monitoring[2]. These offer different combinations of features,
like integration with Amazon’s Alexa smart home hub or
Google’s Nest smart home hub. The Amazon Smart Plug does
not measure power consumption, but purports to be simple to
use and set up. Belkin’s advertising does not advertise easy
setup, and user reviews express setup frustration. Other smart
devices exist which directly include wireless connectivity and
control, e.g. Philip’s Hue light bulbs[3] or Kenmore’s smart
refrigerator[4].

On installation of these devices, useful metadata about
these devices is not automatically known. A smart outlet’s or a
smart device’s physical location must be manually tagged. In
the case of a smart outlet, the attached dumb device must be
manually specified. This device tagging would not only be
necessary at first setup, but every time the user plugs in
something different. The metadata associated with the old
device remains until manually updated. A smart device could
change its location, and has a cost overhead compared to
traditional appliances. Managing these devices creates a
high-friction process for end users.

A smart outlet could analyze the power usage of a
plugged-in device, given that it could already perform power
monitoring. Because e.g. a lamp has a notably different power
usage profile from a refrigerator, this analysis could identify
the type of plugged in device. If all smart outlets in the home
identify the type of attached device, many types of home
automation policies would be immediately implementable
without any configuration required. For example, a

homeowner could command all lights, and only the lights, to
turn off.

Existing smart outlets measure power usage and provide
remote on/off switching functionality. In order to add device
identification to this functionality, a new outlet design requires
an additional computation ability and the device classification
algorithm in software. Previous research shows that such
classification is possible with greater than 90%
accuracy[5]-[7]. Our team built on this research by building a
smart plug with these features to demonstrate the capability
with real appliances. This would further the ability of a smart
home installation to implement automated policies such as
turning off all lights in the home when a user has left,
regardless of where those lights are plugged in and without
requiring special lights, while also ensuring that other devices
remain powered, even if they were plugged into an outlet
previously used for lighting.

System Specifications

Goal Status

Device Weight <1 lb

Device Dimensions ~ 12 x 3 x 3 cm (L-W-H)

Cost of Manufacture (1000) ~ $19

Frequency of Power
Sampling

1 second or less

Outlet/Companion App
Response Time

1 second or less

Power Measurement Error <5%

Classification <5 seconds with 80%
accuracy

Table 1. System Specifications for our design.

Table 1 details our system specifications. The device must

be small and light enough to easily plug into a wall outlet and
stay there; this guides the weight and size requirements. The
system cost should be affordable to consumers, and so we
target $50. The power measurement should be updated in near
real time, or about once per second. The power graph visible
to the user should be updated about as fast, and the device

1

power switching should be about as responsive. For power
measurement error, we expect to be close to existing power
measurement devices, one of which we will use to benchmark
our device. When we classify a device we want to be quick
with letting the user know which type of device they have
plugged in while correctly identifying the type of device.

II. DESIGN

Fig. 1. The block diagram for our device demonstrated at FPR.

A. Smart Meter Enclosure - High Voltage Side
The first section of the design we will be looking at is the

high voltage “side” of the outlet itself. This part of the design
is where the actual power sensing and third party device
interaction will take place. We are using a simple voltage
divider as well as a shunt resistor to obtain the information
needed to calculate power. This information is fed into our
off-the-shelf energy management IC, the Cirrus Logic
CS5490, which uses this information to calculate various
aspects of the power a device is drawing. Additionally, this
part of the design includes a power relay, to allow the outlet to
essentially cut power to devices plugged into it. The results of
this block can be easily tested by comparing the output to the
power usage specifications of a given device.

The voltage input pins on the CS5490 accept a
differential analog input with a maximum peak voltage of 250
mV when using the default gain of 10. The minimum and
maximum common mode voltages accepted are -250mV and
VDDA (3.3V)[8]. The manufacturer does not specify input
resistance or maximum allowable current across these pins but
the provided application notes recommend using a 1 kΩ
resistor on one input pin. To provide the voltage signal we use
a voltage divider, targeting an output signal peak of 100mV.
For a 120V RMS input, actual peak input is 120V*√2 ≅ 170V.
Thus, to divide this signal to 100mV, we choose R1 =
1700*R2. Actual values used are 1.74 MΩ and 1 kΩ. To
satisfy the common mode voltage range requirement we
ensure that the energy measurement IC power supply is
referenced to the neutral line of the input voltage.

The CS5490 accepts a current input signal from a
variety of sensor types, but for size and reliability we choose
to use a shunt resistor. The current input pins have very
similar specifications to the voltage pins. To choose a shunt
resistor value, we target an output signal peak of 100 mV.
With an expected maximum current of 10 A, the

corresponding resistor size is 0.01 Ω and is chosen as such. To
limit the current through the input pins, the manufacturer's
application notes suggest a 1 kΩ resistor on each input pin. To
satisfy the common mode voltage requirement we place one
end of the shunt resistor on the common ground on the neutral
line.

B. Smart Meter Enclosure - Low Voltage Side
Our initial prototypes included optocouplers to isolate the

Data Analysis and Control portion of the design from the
potentially high current coming from rest of the device.
Within this low voltage block, we used a Raspberry Pi 3B+[9],
and later, an Onion Omega2+[14] to execute our classification
algorithm. The microcontroller would connect to our local
wireless network, connect to our backend server, then send
initialization commands to the energy measurement IC to start
it running in continuous conversion mode. Once in this mode,
the CS5490 continually updates internal registers
corresponding to each measurement which it calculates. The
microcontroller sends additional serial commands to read
these registers and temporarily stores them. Because these
values generally correspond to a value between zero and one,
or between negative one and positive one[8], we multiply the
returned values for active and reactive power by a constant to
scale it to the correct value. We find appropriate constant
values by calibrating our device with a known load, verified
by using a separate meter, the Kill-A-Watt. Once we have the
correct, scaled values for power the microcontroller sends
them to the server.

C. User Interface
The last block of the design is the user interface for the

system we are designing. This will take the form of an
Android app, written in Java in android studio. The app will
provide a simple, but intuitive interface that will allow users to
monitor power usage data from multiple outlets in real time. It
will also provide users with the ability to control the outlet by
turning it on and off and setting schedules and protocols for
certains types of devices. The app will consist of two
“screens”; the home screen where you are able to select a
currently connected outlet, and a Graph screen, which will
show information about the selected outlet both graphically
and textually. Users will select which outlet they wish to view
information about by accessing the side bar, which can be
brought up by swiping right on the screen. The sidebar will
also include a “refresh” button which will allow the user to
refresh the list of detected outlets. Once a user selects an outlet
the graph screen will appear displaying information such as
what the current power usage is and what device is connected
to the outlet. The user can return to the home screen, or
navigate to other outlets information, by simply swiping right
and bringing up the side bar again and selecting the desired
option

2

D. Client-Server Architecture
For the communication between smart outlets and the

server, there is a connection based on regular sockets. The
connection is TCP based. For every outlet that connects, the
server creates a thread to handle that specific outlet to listen
for incoming power data. The power data is transmitted over
the network in a json byte encoded format. The power data
can be broken down into three bytes of data where each byte
represents (from least significant to most significant) the value
of the power reading. For example, if we read 0xAABBCC
from the EMIC, the correct way for the server to interpret it is
CC-BB-AA[8]. The server appends the final power data to a
text file containing the power history of a specific outlet.

The companion app and the server communicate over a
different protocol. The protocol is XML-RPC which allows a
client to directly call methods on the server and receive the
value that the methods return. The advantage of this model is
easy communication between programs which use different
programming languages. When we initially tried creating
sockets for communication between the companion app and
the server we were running into issues where either side could
not properly decode bytes that are sent through the sockets.
Our primary use for XML-RPC is to retrieve power samples
from the server for a specific outlet.

The process for the companion app initial setup is as
follows. First the companion app requests the list of currently
connected outlets from the server. This list consists of the
randomly generated UUIDs assigned to each outlet on first
connection. From this list of UUIDs the companion app can
request either power data or send commands to any specific
outlet.

E. Classification Through Dynamic Time Warping (DTW)
The data we will be looking at to classify a device is the

startup characteristics of the device. We want to have the
outlet be able to classify a device quickly and accurately, so
by looking at the startup active and reactive power of a device
like in [7] we can get an idea of what kind of a device it is.
Table 2 shows the three types of classes we are able to
identify.

TYPES OF CLASSES FOR DEVICES

Resistive Inductive Non-Linear

Lamp Fan Computer/Laptop

Heater Vacuum Cell Phone

Toaster Refrigerator Television
Table 2. Classes that a device can fall into for our outlet.

Devices with lighting and heating elements fall into the
resistive class. Resistive devices when powered on will rise to
a steady level and could contain a slight decrease or increase
in active power, and have little to no reactive power. Devices
that contain a AC motor in order to achieve its task are
inductive type loads. Inductive loads will exhibit a big spike in
both active and reactive power which will decrease to a steady
state until powered off. Lastly, most other electronic devices
can be considered non-linear. A nonlinear device has power
that will behave in an erratic way. Depending on what the
non-linear load is doing, both the active and reactive power
will greatly vary over time with the possibility of reactive
power being greater than active power[7].

In order to properly utilize the data we are receiving, we
have chosen to use Dynamic Time Warping, or DTW to
classify our devices. In section G we go into depth of how
DTW works and how we use it for classification.

F. Energy Measurement Integrated Circuit (EMIC)
The energy measurement chip we use is the Cirrus Logic

CS5490[8]. It operates at a voltage of 3.3V, but connected to
mains voltage indirectly through the current and voltage
sensor input pins. To protect our microcontroller and
connected accessories from a possibly dangerous voltage
presence at the EMIC, we electrically isolated the two using
optocouplers, which allow them to communicate without
current flowing between them. The specific pins which are
isolated between the two devices are the RESET, UART RX,
and TX pins. In our minimized prototype, the Omega would
not have connected human interface devices like a keyboard
and mouse that the Raspberry Pi had during initial
prototyping. For this reason and that a user would be
physically isolated from the circuitry by a plastic enclosure,
we removed the optocouplers from the design.

The Omega[14] uses a UART to communicate with the
chip. The interface is managed through a python script with
the PySerial library[15]. The specific settings for the UART
interface that we used to communicate with the energy
management IC are as follows. The baud rate is 600Bd, there
are no parity bits, there is one stop bit, and there are eight bits
for the payload size.

3

The CS5490 updates its internal registers with power
calculations at regular intervals. The frequency which the
chip updates these registers is configurable by choosing how
many samples the chip should measure before averaging and
storing them—the default is 4000 samples, and because the
chip takes that many samples per second, the measurement
registers are by default updated once per second. We chose to
increase the sample rate to twice per second in order to capture
more detail in the startup power waveforms. We
experimented with increased sampling frequencies, but found
that the serial baud rate would become a bottleneck after about
four hertz. While the baud rate is configurable, we did not
successfully increase it. In our limited attempts, the Omega
could no longer read serial communications from the CS5490
after setting the register specifying the baud rate.

G. Dynamic Time Warping
 Dynamic Time Warping is a standard way to measure
how different two time series waveforms are. The value
calculated from DTW is known as the distance. DTW
calculates this distance by using a distance matrix. The values
in a distance matrix can be calculated by using Equation 1,
where Ai is a point in a time series and Bj is a point in
another time series, D[a,b] is the distance calculated for
previous points

| Ai - Bj | + min(D[i-1, j-1] , D[i-1, j] , D[i, j-1]) (1)

Once all the values in the distance matrix are calculated, the
shortest path is found from the last value calculated to the
first. As the distance calculated increases, two time series are
going to be more dissimilar. Unlike Euclidean Distance which
a small difference in waveforms can result in a huge distance
calculated, DTW compresses the waveforms and aligns them.
This compression results in a distance that is more accurate
because it can account for slight variations in the
waveforms[12].
 For our classification, we normalize incoming power data
from the outlet between 0 and 1, and then we compare the
waveform using [13] to what an ideal waveform for the
different classes would look like. The comparison that results
in the lowest distance is what the device is classified as.
Figure 2 shows our ideal waveforms taken from what we
learned in section E.

(a) An ideal resistive waveform for a device.

(b) An ideal inductive waveform for a device.

(c) An ideal non-linear waveform for a device.

Figure 2. (a) (b) and (c) show what an ideal device would behave

like for each of the classes we are using.

4

III. PROJECT MANAGEMENT

Goal Status

Device/App Response Time
< 1 second

Completed

Power Measurement Within
5%

Completed

App Graph Implemented Completed

Power Data Samples Every
1 second

Completed

Classification 80% accurate Incomplete (71.4%)
Table 3. Project goal completion status.

Throughout SDP our team has been able accomplish most
of the goals we set out to reach by now. Our app and device
both have a response time that is within our 1 second
specification; the app is able to easily graph in real time the
data that it is receiving from the outlet, and our device samples
the power data every second. We are also able to measure
power with 5% and are able to accurately classify a number of
different devices. Classification is not up to where we would
like it to be. We currently have an overall accuracy of 71.4%
with our goal having been 80%. Table 4 is a breakdown of the
accuracies by type, and then by device. We are the most
accurate in correctly identifying resistive loads as they are and
we struggle with inductive and non-linear loads.

Our group was able to effectively divide the work
throughout the year. With Kriss spearheading hardware
development, with the help of Garrett and Mark. Brendon and
Garrett implementing the companion app, as well as
establishing a wireless connection between the app and device.
Mark assisting in both areas while researching and
implementing our classification algorithm using DTW with
Garrett's assistance. In order to communicate with one another
when not in person, we have been primarily using Discord and
have been emailing one another in order to stay on track and
keep each other updated on the progress of each other's work.

Pertaining to Table 3 here is the explanation for how we
made the determination that we completed our goals. With
respect to the response time for the device and the app, this
time relies almost entirely on network latency and the
responsiveness of a few hardware elements. The network we
setup for our demo was very similar to a network setup that
could be found in almost any household. It consisted of the
smart outlet connected to a central router with the server also
connected to the same router. the average network latency
between them we measured to be around 2ms. When the
companion app connects to the server and the outlet wants to
communicate with the companion app, the round trip latency

is approximately 140ms. This means worst case network
latency will be approximately 144ms. We obtained the
network latency data by using the Linux ping network utility.
The response time of the mechanical relay, which controls the
power flow to the attached device, is at worst case 10ms[10].

Resistive 26/28 92.8%

Tall lamp 9/9

Coffee maker 4/6

Toaster oven 3/3

150W lamp 10/10

Inductive 17/29 58.6%

Vacuum (big) 7/9

Vacuum (small) 1/8

Fan 7/10

Refrigerator 2/2

Non-linear 12/20 60%

Printer 5/6

Nintendo Switch 2/5

Laptop 5/9

Total 55/77 71.4%

Table 4. Accuracy of load type and device specific.

In order to benchmark the accuracy of our device’s power

measurement, we compare to a Kill-A-Watt device. This
device has an LCD panel displaying power consumption of an
attached device in watts. We read this displayed number and
compare it to our own device’s power measurement. The
benchmark device, the Kill-A-Watt, visibly displays a
precision of only +/- 1 W. Our low voltage testing did result
in measurements within this range. However, because our low
voltage test load consumed only about 4 W of power, the
benchmark device’s precision was insufficient for us to
determine that our device’s measurement was within 1% of it.
Once we proceeded to measuring power usage by 110V

5

devices, we could more precisely gauge our accuracy by using
a 150W light bulb, for example. After calibration, we would
read this bulb’s active power as 150W, with brief, infrequent
measurements reading up to 157W. With this load, we then
have accuracy approximately with 5% of our expected value.

The graph we use in our app was implemented using the
GraphView Library for Android Studio[11]. This library
offers a wide range of functions that allow us to change
various attributes of the graph, all of which can be changed
dynamically to adapt to our incoming data so that it is
displayed in a simple, easy to understand way. We often
change the scale of the graph to make sure all data points are
being displayed, for example if the initial max value of the
graph is set to 10, but we plug in a device with a power usage
greater than 10W, the graph will automatically adjust, setting
the new maximum to at least the highest observed value.

The way we attain the goal for power data samples every
one second is to properly configure the energy management
IC. On startup we send commands over UART to the energy
management IC to setup. The first command we send is a hex
value which changes the area of memory we can retrieve
values from. These areas are called pages and on startup the
active page is number zero. The commands on page zero allow
us to query chip status as well as peak voltage and peak
current. To get total apparent power, which we are using for
classification. We send a command to change the active page
from number zero to number 16. Once in page 16 we can
query measurements like instant current, instant voltage,
instant power, apparent power, and total apparent power.
Before we send commands to get measurements we send a
command to tell the energy management IC to start continuous
conversion. Continuous conversion is how the energy
management IC takes measurements and the frequency of the
samples is by default 1Hz.

For classification, we believe most of the error is due to
our devices not matching our ideals. Specifically, with
non-linear loads, we chose an arbitrary varying waveform as
our ideal, so if a non-linear device is varying in such a way
that is significantly different from our ideal, that could be one
source of error. Another issue could be that we are not
sampling fast enough to always catch the spike that an
inductive load should be producing. We also have only done
trials in the tens range, with more time we could have done
hundreds of trials and would have been able to narrow down
sources of error.

IV. CONCLUSION

Overall, we are satisfied with the final result of our project.
We managed to stay on track over the course of the year and
implement almost every feature we envisioned showing at
Demo Day. This project was a very educational experience as
we were able to explore some topics that as a group of four
CSEs, we may have had little to no exposure to otherwise.

Fig. 3. Timeline showing our progress throughout the year with important

deadlines labeled..

V. ACKNOWLEDGMENTS

We would like to give a special thank you to our advisor
David Irwin for the time and effort he has dedicated to helping
us bring this project to life. We would also like to thank Shira
Epstein and the staff of M5 for all the help and resources they
provided to us throughout the process. Finally, we’d like to
thank Professors Hollot and Soules for helping to keep us
organized and on track.

VI. REFERENCES

[1] Amazon Smart Plug. Available:
https://www.amazon.com/Amazon-Smart-Plug-works-Alexa/d
p/B01MZEEFNX/.
[2] Anonymous "Wemo Insight Smart Plug with Energy
Monitoring," Available:
https://www.amazon.com/dp/B01DBXNYCS.
[3] Anonymous "Philips Hue White Ambiance BR30 60W
Equivalent Dimmable LED Smart Flood Light," 2019.
Available:
https://www.amazon.com/Philips-Hue-Ambiance-Equivalent-
Assistant/dp/B01KJYSOHC/.
[4] Anonymous "Kenmore 4675049 Smart 24 cu. ft. Counter
Depth French Door Bottom Freezer Refrigerator in Black -
Works with Amazon Alexa," 2019. Available:
https://www.amazon.com/Kenmore-Smart-French-Bottom-Mo
unt-Refrigerator/dp/B0745QL5HD/.

6

[5] L. P. R. Ambati and D. Irwin, "AutoPlug: An automated
metadata service for smart outlets," in 2016 Seventh
International Green and Sustainable Computing Conference
(IGSC), 2016, . DOI: 10.1109/IGCC.2016.7892604.
[6] S. Barker et al, "Non-intrusive load identification for smart
outlets," in 2014 IEEE International Conference on Smart
Grid Communications (SmartGridComm), 2014, . DOI:
10.1109/SmartGridComm.2014.7007704.
[7] S. Barker et al, "Empirical Characterization, Modeling,
and Analysis of Smart Meter Data," IEEE Journal on Selected
Areas in Communications, vol. 32, (7), pp. 1312-1327, 2014. .
DOI: 10.1109/JSAC.2014.2332107.
[8] (Mar). CS5490 Product Datasheet. Available:
https://statics.cirrus.com/pubs/proDatasheet/CS5490_F3.pdf.
[9] Anonymous "Raspberry Pi 3 Model B+ product brief,"
2018. Available:
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-
Model-Bplus-Product-Brief.pdf
[10] HF3FD Subminiature High Power Relay. Available:
http://www.hongfa.com/pro/pdf/HF3FD_en.pdf.
[11] Android Graph View plotting library. Available:
http://www.android-graphview.org/.
[12] How DTW (Dynamic Time Warping) algorithm works.
From: https://www.youtube.com/watch?v=_K1OsqCicBY.
[13] (May)DTW (Dynamic Time Warping) python module.
Available: https://github.com/pierre-rouanet/dtw.
[14] Onion Omega2 Documentation. Available:
https://docs.onion.io/omega2-docs/omega2p.html.
[15] pySerial Documentation. Available:
https://pythonhosted.org/pyserial/

7

