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Abstract—Home automation today consists of numerous      
smart devices and accessories that enable intelligent power        
management, scheduling and other automated and      
semi-automated control. These devices, however, currently      
require a manual setup process which does not scale well to           
whole-home implementation. Different types of home appliances       
can have distinctly different power usage profiles, and because         
smart outlets have access to these waveforms, classification of         
different plugged in device types is possible. In this paper, we           
describe our work toward implementing a smart outlet with the          
ability to automatically distinguish plugged in lights from other         
kinds of devices. 

I. INTRODUCTION 

Homeowners today can buy multiple kinds of smart        
accessories. In particular, smart power outlets allow users to         
remotely monitor power usage and to remotely switch these         
devices on and off, either manually or part of automated          
policies. These include the Amazon Smart Plug[1] and        
Belkin’s Wemo Insight Smart Plug with Energy       
Monitoring[2]. These offer different combinations of features,       
like integration with Amazon’s Alexa smart home hub or         
Google’s Nest smart home hub. The Amazon Smart Plug does          
not measure power consumption, but purports to be simple to          
use and set up. Belkin’s advertising does not advertise easy          
setup, and user reviews express setup frustration. Other smart         
devices exist which directly include wireless connectivity and        
control, e.g. Philip’s Hue light bulbs[3] or Kenmore’s smart         
refrigerator[4].  

On installation of these devices, useful metadata about         
these devices is not automatically known. A smart outlet’s or a           
smart device’s physical location must be manually tagged. In         
the case of a smart outlet, the attached dumb device must be            
manually specified. This device tagging would not only be         
necessary at first setup, but every time the user plugs in           
something different. The metadata associated with the old        
device remains until manually updated. A smart device could         
change its location, and has a cost overhead compared to          
traditional appliances. Managing these devices creates a       
high-friction process for end users. 

A smart outlet could analyze the power usage of a          
plugged-in device, given that it could already perform power         
monitoring. Because e.g. a lamp has a notably different power          
usage profile from a refrigerator, this analysis could identify         
the type of plugged in device. If all smart outlets in the home             
identify the type of attached device, many types of home          
automation policies would be immediately implementable      
without any configuration required. For example, a       

homeowner could command all lights, and only the lights, to          
turn off. 

Existing smart outlets measure power usage and provide        
remote on/off switching functionality. In order to add device         
identification to this functionality, a new outlet design requires         
an additional computation ability and the device classification        
algorithm in software. Previous research shows that such        
classification is possible with greater than 90%       
accuracy[5]-[7]. Our team built on this research by building a          
smart plug with these features to demonstrate the capability         
with real appliances. This would further the ability of a smart           
home installation to implement automated policies such as        
turning off all lights in the home when a user has left,            
regardless of where those lights are plugged in and without          
requiring special lights, while also ensuring that other devices         
remain powered, even if they were plugged into an outlet          
previously used for lighting. 

 
System Specifications 

Goal Status 

Device Weight <1 lb 

Device Dimensions ~ 12 x 3 x 3 cm (L-W-H) 

Cost of Manufacture (1000) ~ $19 

Frequency of Power 
Sampling 

1 second or less 

Outlet/Companion App 
Response Time 

1 second or less 

Power Measurement Error <5% 

Classification <5 seconds with 80% 
accuracy 

Table 1. System Specifications for our design. 

 
Table 1 details our system specifications. The device must         

be small and light enough to easily plug into a wall outlet and             
stay there; this guides the weight and size requirements. The          
system cost should be affordable to consumers, and so we          
target $50. The power measurement should be updated in near          
real time, or about once per second. The power graph visible           
to the user should be updated about as fast, and the device            
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power switching should be about as responsive. For power         
measurement error, we expect to be close to existing power          
measurement devices, one of which we will use to benchmark          
our device. When we classify a device we want to be quick            
with letting the user know which type of device they have           
plugged in while correctly identifying the type of device. 

 

II. DESIGN 

 
Fig. 1. The block diagram for our device demonstrated at FPR. 

A. Smart Meter Enclosure - High Voltage Side 
The first section of the design we will be looking at is the             

high voltage “side” of the outlet itself. This part of the design            
is where the actual power sensing and third party device          
interaction will take place. We are using a simple voltage          
divider as well as a shunt resistor to obtain the information           
needed to calculate power. This information is fed into our          
off-the-shelf energy management IC, the Cirrus Logic       
CS5490, which uses this information to calculate various        
aspects of the power a device is drawing. Additionally, this          
part of the design includes a power relay, to allow the outlet to             
essentially cut power to devices plugged into it. The results of           
this block can be easily tested by comparing the output to the            
power usage specifications of a given device. 

The voltage input pins on the CS5490 accept a         
differential analog input with a maximum peak voltage of 250          
mV when using the default gain of 10. The minimum and           
maximum common mode voltages accepted are -250mV and        
VDDA (3.3V)[8]. The manufacturer does not specify input        
resistance or maximum allowable current across these pins but         
the provided application notes recommend using a 1 kΩ         
resistor on one input pin. To provide the voltage signal we use            
a voltage divider, targeting an output signal peak of 100mV.          
For a 120V RMS input, actual peak input is 120V*√2 ≅ 170V.            
Thus, to divide this signal to 100mV, we choose R1 =           
1700*R2. Actual values used are 1.74 MΩ and 1 kΩ. To           
satisfy the common mode voltage range requirement we        
ensure that the energy measurement IC power supply is         
referenced to the neutral line of the input voltage. 

The CS5490 accepts a current input signal from a         
variety of sensor types, but for size and reliability we choose           
to use a shunt resistor. The current input pins have very           
similar specifications to the voltage pins. To choose a shunt          
resistor value, we target an output signal peak of 100 mV.           
With an expected maximum current of 10 A, the         

corresponding resistor size is 0.01 Ω and is chosen as such. To            
limit the current through the input pins, the manufacturer's         
application notes suggest a 1 kΩ resistor on each input pin. To            
satisfy the common mode voltage requirement we place one         
end of the shunt resistor on the common ground on the neutral            
line. 
 

B. Smart Meter Enclosure - Low Voltage Side 
Our initial prototypes included optocouplers to isolate the         

Data Analysis and Control portion of the design from the          
potentially high current coming from rest of the device.         
Within this low voltage block, we used a Raspberry Pi 3B+[9],           
and later, an Onion Omega2+[14] to execute our classification         
algorithm. The microcontroller would connect to our local        
wireless network, connect to our backend server, then send         
initialization commands to the energy measurement IC to start         
it running in continuous conversion mode. Once in this mode,          
the CS5490 continually updates internal registers      
corresponding to each measurement which it calculates. The        
microcontroller sends additional serial commands to read       
these registers and temporarily stores them. Because these        
values generally correspond to a value between zero and one,          
or between negative one and positive one[8], we multiply the          
returned values for active and reactive power by a constant to           
scale it to the correct value. We find appropriate constant          
values by calibrating our device with a known load, verified          
by using a separate meter, the Kill-A-Watt. Once we have the           
correct, scaled values for power the microcontroller sends        
them to the server. 

 

C. User Interface 
The last block of the design is the user interface for the            

system we are designing. This will take the form of an           
Android app, written in Java in android studio. The app will           
provide a simple, but intuitive interface that will allow users to           
monitor power usage data from multiple outlets in real time. It           
will also provide users with the ability to control the outlet by            
turning it on and off and setting schedules and protocols for           
certains types of devices. The app will consist of two          
“screens”; the home screen where you are able to select a           
currently connected outlet, and a Graph screen, which will         
show information about the selected outlet both graphically        
and textually. Users will select which outlet they wish to view           
information about by accessing the side bar, which can be          
brought up by swiping right on the screen. The sidebar will           
also include a “refresh” button which will allow the user to           
refresh the list of detected outlets. Once a user selects an outlet            
the graph screen will appear displaying information such as         
what the current power usage is and what device is connected           
to the outlet. The user can return to the home screen, or            
navigate to other outlets information, by simply swiping right         
and bringing up the side bar again and selecting the desired           
option 
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D. Client-Server Architecture 
For the communication between smart outlets and the        

server, there is a connection based on regular sockets. The          
connection is TCP based. For every outlet that connects, the          
server creates a thread to handle that specific outlet to listen           
for incoming power data. The power data is transmitted over          
the network in a json byte encoded format. The power data           
can be broken down into three bytes of data where each byte            
represents (from least significant to most significant) the value         
of the power reading. For example, if we read 0xAABBCC          
from the EMIC, the correct way for the server to interpret it is             
CC-BB-AA[8]. The server appends the final power data to a          
text file containing the power history of a specific outlet. 

The companion app and the server communicate over a         
different protocol. The protocol is XML-RPC which allows a         
client to directly call methods on the server and receive the           
value that the methods return. The advantage of this model is           
easy communication between programs which use different       
programming languages. When we initially tried creating       
sockets for communication between the companion app and        
the server we were running into issues where either side could           
not properly decode bytes that are sent through the sockets.          
Our primary use for XML-RPC is to retrieve power samples          
from the server for a specific outlet. 

The process for the companion app initial setup is as          
follows. First the companion app requests the list of currently          
connected outlets from the server. This list consists of the          
randomly generated UUIDs assigned to each outlet on first         
connection. From this list of UUIDs the companion app can          
request either power data or send commands to any specific          
outlet.  

 

E. Classification Through Dynamic Time Warping (DTW) 
The data we will be looking at to classify a device is the             

startup characteristics of the device. We want to have the          
outlet be able to classify a device quickly and accurately, so           
by looking at the startup active and reactive power of a device            
like in [7] we can get an idea of what kind of a device it is.                
Table 2 shows the three types of classes we are able to            
identify.  

 
 
 
 
 
 
 
 
 
 
 
 

TYPES OF CLASSES FOR DEVICES 

 

Resistive Inductive Non-Linear 

Lamp Fan Computer/Laptop 

Heater Vacuum Cell Phone 

Toaster Refrigerator Television 
Table 2. Classes that a device can fall into for our outlet. 

Devices with lighting and heating elements fall into the         
resistive class. Resistive devices when powered on will rise to          
a steady level and could contain a slight decrease or increase           
in active power, and have little to no reactive power. Devices           
that contain a AC motor in order to achieve its task are            
inductive type loads. Inductive loads will exhibit a big spike in           
both active and reactive power which will decrease to a steady           
state until powered off. Lastly, most other electronic devices         
can be considered non-linear. A nonlinear device has power         
that will behave in an erratic way. Depending on what the           
non-linear load is doing, both the active and reactive power          
will greatly vary over time with the possibility of reactive          
power being greater than active power[7]. 

In order to properly utilize the data we are receiving, we           
have chosen to use Dynamic Time Warping, or DTW to          
classify our devices. In section G we go into depth of how            
DTW works and how we use it for classification. 
 

F. Energy Measurement Integrated Circuit (EMIC) 
The energy measurement chip we use is the Cirrus Logic          

CS5490[8]. It operates at a voltage of 3.3V, but connected to           
mains voltage indirectly through the current and voltage        
sensor input pins. To protect our microcontroller and        
connected accessories from a possibly dangerous voltage       
presence at the EMIC, we electrically isolated the two using          
optocouplers, which allow them to communicate without       
current flowing between them. The specific pins which are         
isolated between the two devices are the RESET, UART RX,          
and TX pins. In our minimized prototype, the Omega would          
not have connected human interface devices like a keyboard         
and mouse that the Raspberry Pi had during initial         
prototyping. For this reason and that a user would be          
physically isolated from the circuitry by a plastic enclosure,         
we removed the optocouplers from the design. 

The Omega[14] uses a UART to communicate with the         
chip. The interface is managed through a python script with          
the PySerial library[15]. The specific settings for the UART         
interface that we used to communicate with the energy         
management IC are as follows. The baud rate is 600Bd, there           
are no parity bits, there is one stop bit, and there are eight bits              
for the payload size.  
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The CS5490 updates its internal registers with power        
calculations at regular intervals. The frequency which the        
chip updates these registers is configurable by choosing how         
many samples the chip should measure before averaging and         
storing them—the default is 4000 samples, and because the         
chip takes that many samples per second, the measurement         
registers are by default updated once per second. We chose to           
increase the sample rate to twice per second in order to capture            
more detail in the startup power waveforms. We        
experimented with increased sampling frequencies, but found       
that the serial baud rate would become a bottleneck after about           
four hertz. While the baud rate is configurable, we did not           
successfully increase it. In our limited attempts, the Omega         
could no longer read serial communications from the CS5490         
after setting the register specifying the baud rate. 
 

G. Dynamic Time Warping 
        Dynamic Time Warping is a standard way to measure 
how different two time series waveforms are. The value 
calculated from DTW is known as the distance. DTW 
calculates this distance by using a distance matrix. The values 
in a distance matrix can be calculated by using Equation 1, 
where Ai  is a point in a time series and Bj is a point in 
another time series, D[a,b] is the distance calculated for 
previous points 
 
| Ai - Bj | + min(D[ i-1, j-1 ] , D[ i-1,  j ] , D[  i, j-1 ] )         (1) 
 
Once all the values in the distance matrix are calculated, the 
shortest path is found from the last value calculated to the 
first. As the distance calculated increases, two time series are 
going to be more dissimilar. Unlike Euclidean Distance which 
a small difference in waveforms can result in a huge distance 
calculated, DTW compresses the waveforms and aligns them. 
This compression results in a distance that is more accurate 
because it can account for slight variations in the 
waveforms[12]. 
        For our classification, we normalize incoming power data 
from the outlet between 0 and 1, and then we compare the 
waveform using [13] to what an ideal waveform for the 
different classes would look like. The comparison that results 
in the lowest distance is what the device is classified as. 
Figure 2 shows our ideal waveforms taken from what we 
learned in section E. 

 
(a) An ideal resistive waveform for a device. 

 

 
(b) An ideal inductive waveform for a device. 

 

 
(c) An ideal non-linear waveform for a device. 

 
Figure 2. (a) (b) and (c) show what an ideal device would behave 

like for each of the classes we are using. 
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III. PROJECT MANAGEMENT 

 

Goal Status 

Device/App Response Time 
< 1 second 

Completed 

Power Measurement Within 
5% 

Completed 

App Graph Implemented Completed 

Power Data Samples Every 
1 second 

Completed  

Classification 80% accurate Incomplete (71.4%) 
Table 3. Project goal completion status. 

Throughout SDP our team has been able accomplish most         
of the goals we set out to reach by now. Our app and device              
both have a response time that is within our 1 second           
specification; the app is able to easily graph in real time the            
data that it is receiving from the outlet, and our device samples            
the power data every second. We are also able to measure           
power with 5% and are able to accurately classify a number of            
different devices. Classification is not up to where we would          
like it to be. We currently have an overall accuracy of 71.4%            
with our goal having been 80%. Table 4 is a breakdown of the             
accuracies by type, and then by device. We are the most           
accurate in correctly identifying resistive loads as they are and          
we struggle with inductive and non-linear loads. 

Our group was able to effectively divide the work         
throughout the year. With Kriss spearheading hardware       
development, with the help of Garrett and Mark. Brendon and          
Garrett implementing the companion app, as well as        
establishing a wireless connection between the app and device.         
Mark assisting in both areas while researching and        
implementing our classification algorithm using DTW with       
Garrett's assistance. In order to communicate with one another         
when not in person, we have been primarily using Discord and           
have been emailing one another in order to stay on track and            
keep each other updated on the progress of each other's work. 

Pertaining to Table 3 here is the explanation for how we           
made the determination that we completed our goals. With         
respect to the response time for the device and the app, this            
time relies almost entirely on network latency and the         
responsiveness of a few hardware elements. The network we         
setup for our demo was very similar to a network setup that            
could be found in almost any household. It consisted of the           
smart outlet connected to a central router with the server also           
connected to the same router. the average network latency         
between them we measured to be around 2ms. When the          
companion app connects to the server and the outlet wants to           
communicate with the companion app, the round trip latency         

is approximately 140ms. This means worst case network        
latency will be approximately 144ms. We obtained the        
network latency data by using the Linux ping network utility.          
The response time of the mechanical relay, which controls the          
power flow to the attached device, is at worst case 10ms[10].  

 

Resistive 26/28 92.8% 

Tall lamp 9/9  

Coffee maker 4/6  

Toaster oven 3/3  

150W lamp 10/10  

   

Inductive 17/29 58.6% 

Vacuum (big) 7/9  

Vacuum (small) 1/8  

Fan 7/10  

Refrigerator 2/2  

   

Non-linear 12/20 60% 

Printer 5/6  

Nintendo Switch 2/5  

Laptop 5/9  

   

Total 55/77 71.4% 

Table 4. Accuracy of load type and device specific. 
 
In order to benchmark the accuracy of our device’s power          

measurement, we compare to a Kill-A-Watt device. This        
device has an LCD panel displaying power consumption of an          
attached device in watts. We read this displayed number and          
compare it to our own device’s power measurement. The         
benchmark device, the Kill-A-Watt, visibly displays a       
precision of only +/- 1 W. Our low voltage testing did result            
in measurements within this range. However, because our low         
voltage test load consumed only about 4 W of power, the           
benchmark device’s precision was insufficient for us to        
determine that our device’s measurement was within 1% of it.          
Once we proceeded to measuring power usage by 110V         
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devices, we could more precisely gauge our accuracy by using          
a 150W light bulb, for example. After calibration, we would          
read this bulb’s active power as 150W, with brief, infrequent          
measurements reading up to 157W. With this load, we then          
have accuracy approximately with 5% of our expected value. 

The graph we use in our app was implemented using the           
GraphView Library for Android Studio[11]. This library       
offers a wide range of functions that allow us to change           
various attributes of the graph, all of which can be changed           
dynamically to adapt to our incoming data so that it is           
displayed in a simple, easy to understand way. We often          
change the scale of the graph to make sure all data points are             
being displayed, for example if the initial max value of the           
graph is set to 10, but we plug in a device with a power usage               
greater than 10W, the graph will automatically adjust, setting         
the new maximum to at least the highest observed value. 

The way we attain the goal for power data samples every           
one second is to properly configure the energy management         
IC. On startup we send commands over UART to the energy           
management IC to setup. The first command we send is a hex            
value which changes the area of memory we can retrieve          
values from. These areas are called pages and on startup the           
active page is number zero. The commands on page zero allow           
us to query chip status as well as peak voltage and peak            
current. To get total apparent power, which we are using for           
classification. We send a command to change the active page          
from number zero to number 16. Once in page 16 we can            
query measurements like instant current, instant voltage,       
instant power, apparent power, and total apparent power.        
Before we send commands to get measurements we send a          
command to tell the energy management IC to start continuous          
conversion. Continuous conversion is how the energy       
management IC takes measurements and the frequency of the         
samples is by default 1Hz. 

For classification, we believe most of the error is due to           
our devices not matching our ideals. Specifically, with        
non-linear loads, we chose an arbitrary varying waveform as         
our ideal, so if a non-linear device is varying in such a way             
that is significantly different from our ideal, that could be one           
source of error. Another issue could be that we are not           
sampling fast enough to always catch the spike that an          
inductive load should be producing. We also have only done          
trials in the tens range, with more time we could have done            
hundreds of trials and would have been able to narrow down           
sources of error. 

IV. CONCLUSION 

Overall, we are satisfied with the final result of our project.           
We managed to stay on track over the course of the year and             
implement almost every feature we envisioned showing at        
Demo Day. This project was a very educational experience as          
we were able to explore some topics that as a group of four             
CSEs, we may have had little to no exposure to otherwise. 

 

 

 
Fig. 3. Timeline showing our progress throughout the year with important           

deadlines labeled.. 
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