
1
UMass Amherst Team 7 MDR Report SDP 2019

Preparation of Senior
Design Project Report

Harold Healy, EE, Ryan Walsh, CSE, Rahaun Perkins,
CSE, and Nicholas Kafasis, CSE

Abstract—The demand for autonomous systems is rapidly
increasing all over the world. Both suppliers and consumers
make every effort to use autonomous systems for their efficiency
and ease of use. This technology will bring that efficient and easy
automated technology to the music industry. Our system is an
intermediary device, designed to automatically regulate the
volume of an audio source depending on how much ambient
noise there is in the surrounding environment.

I. INTRODUCTION

Autonomous systems are being used all over the world to
make tedious tasks disappear. From automatic thermostats
regulating the heat of buildings everywhere, to the brightness
on smartphones adjusting the screen brightness depending on
the light in the surrounding environment. Another nuance that
many people find themselves facing is volume control.
Whether it be turning up the volume on a TV or turning up the
music on a speaker, someone is always adjusting the volume
of an audio source depending on the ambient noise in the
surrounding environment. The goal of the dynamic volume
controller (DVC) in this paper is to automate that adjustment
for everyone.

The development of “smart” homes has been a popular area
of research recently. There are wide range of ways to connect
devices like phones, lights, and TVs in order to automate
tasks. According to an IoT Innovation article, “Utilizing
integrated technological systems in your home is one of the
most significant new trends in digital innovation.”[5] Our
dynamic volume controller would add another element of
automation to the smart home.

There have been similar volume controllers created, but
they are either limited in use to very particular scenarios or
very expensive. One example is the TOA Electronics Digital
Ambient Noise Controller.[6] This model is on the market for
well over a thousand dollars and is meant for large scale
environments, such as malls and airports. This kind of solution
is not suitable for a normal consumer looking for a less
expensive product to use in a smaller scale environment.
Another product that is currently available is the International
Control Systems Automatic TV Controller.[7] This system
works exclusively for when the volume on the TV suddenly
becomes too loud. We want to make our DVC versatile and
inexpensive so that it can be a suitable product for the normal
household consumer wanting to further automate his/her
house.

We decided on the following requirements to make sure our
design provides the best experience for users: (1)Easy to use
phone app will allow user to set fixed level of audibility
above/below ambient noise, (2) System will not exceed max
volume setting, (3) System will not react suddenly to isolated
loud noises, (4) System will function in multiple locations
within desired room. We chose an iOS app as a user interface
in order provide something that consumers are familiar with.
The max volume requirement is in place in order to prevent an
unstable feedback system, driving the system to an
unreasonably high volume and possibly causing hearing
damage. The system must not react to isolated loud noises
because this would cause rapid changes in volume that would
be undesirable to the user. Finally, the system must be able to
function within multiple locations of the desired room to allow
a flexible and portable system that can be easily moved if the
dynamic of the room changes.

The following specifications have been created to make sure
that the requirements are satisfied.

Table 1:
Specifications and requirements

Our device will require an initial calibration by the user in
the room where the audio source is present. The system would
then regulate the volume of that audio source by controlling
what it sends to its speaker. The setup of the system will be
explained in more detail in the next section of the report.

Requirements Specification Value

System will not
exceed max
volume setting

Maintain (Signal +
Noise) to Signal
Ratio within
desired range

1.1-2

(1.5 for MDR)

System will not
react suddenly to
isolated loud
noises

System will react
to noise above
desired ratio only
after a certain time
period

TBD

(Instantaneous
Reactions for
MDR)

Easy to use phone
app will allow
user to set fixed
level of audibility

System will work
within a distance
from audio source.

20 ft

2
UMass Amherst Team 7 MDR Report SDP 2019

Block Diagram

 Figure 1: Block Diagram

II. DESIGN

A. Overview

Our basic design will be a system that lies on the path
between an audio output signal source, e.g. audio from a
phone or a TV, and an output speaker to play the source. The
system will use an external microphone to capture the source
and environment sound levels. The input sound source signal
as well as the captured microphone signal will be monitored
continuously over time. If the system detects a significant
level of ambient noise (i.e., a large ratio of microphone signal
volume to expected microphone signal volume based on the
input signal), then the system will increase the output volume
that is sent to the speaker until a satisfactory level of
environment noise to input source signal is regained.

Our design will center around a Raspberry Pi to regulate the
entire system. It will be the central hub responsible for
monitoring the microphone and original audio source signals,
as well as making the necessary calculations on these signals
to drive the necessary volume adjustments. The Raspberry Pi
will ultimately output a value that will program a digitally
programmable analog amplifier, and that amplifier is what will
increase the volume of the output signal sent to the output
speaker.

As we considered how to build the dynamic volume
adjustment system, it was clear that we needed a central
processing unit that would be able to handle the monitoring
and calculations of several external signals. In addition to
considering a Raspberry Pi, we first considered an Arduino to
handle the job. As we looked into an Arduino Uno, we saw
that it primarily operated with an ATmega328P
microcontroller, an 8-bit microcontroller with a clock speed of
16MHz [1]. Additionally, the Arduino had only 32 KB of
flash memory and 2 KB of SRAM memory for runtime data.

Lastly, the Arduino’s I/O interface includes only 14 I/O

pins [2]. We determined that for the live runtime calculation
necessary for our system, we would definitely need a device
with higher processing power than that of the ATmega328P,
and much more memory than that of the Arduino.
Additionally, the volume adjustment system design requires
several I/O peripherals (microphone, audio source, output
signal) to correctly run, and the limitation of 14 digital I/O
pins would be a hindrance to try and work a solution around.
That is why we turned to a much more computationally
capable device—the Raspberry Pi 3 Model B+. The Raspberry
Pi operates on a 1.4GHz 64-bit quad-core Arm processor. It
also contains 1 GB of SDRAM memory [3]. These processing
and memory specifications are much more suitable for the
level of processing that we will require for live-time audio
monitoring. Additionally, the Pi includes 4 USB 2.0 ports and
a 4-pole stereo output port [3], which is suitable for the
necessary external peripherals that we must connect to the
DVC. A bonus to the Raspberry Pi is that it contains built-in
Bluetooth and Wi-Fi capability [3], which allows us to expand
out to wireless connections with ease; this is a positive, as we
want to use wireless microphones and connect the system
wirelessly to a smartphone application.

Our design will also utilize a digitally programmable analog
amplifier to control the amplification of the output sound
signal. We had originally planned to simply digitally scale the
output signal in software running on the Raspberry Pi before
the signal was output. However, as we began working on the
DVC system, we discovered that digitally processing and
outputting live audio through the Pi resulted in poor quality
audio. This led us to rearrange the design so that the input
signal is also routed straight to an analog amplifier, which will

3
UMass Amherst Team 7 MDR Report SDP 2019

be programmed by I/O pins on the Pi itself, which we expect
to result in much higher quality audio.

Our block diagram is shown above in Figure 1. As is
shown, the Raspberry Pi is at the center of the design,
responsible for taking in the audio source signal, the
microphone signal, mobile device information, and running
central computing modules to control the DVC system. The
mobile device block refers to a smartphone application that
will allow the user to connect to the system and control certain
settings. The amplifier will be responsible for modifying the
volume of the output signal.

B. Initial Calibration

The function of the initial calibration stage is to run a
calibration process that will give the system a sense of the
expected microphone pickup signal intensity (volume) given a
certain input signal intensity (volume). This is necessary, as
the DVC system is designed so that the connected microphone
can be at a variable distance from the central system, and the
system may be placed in a wide variety of environments,
which will result in entirely different signal volume responses.
The reason that we specifically want this expected microphone
intensity vs. input intensity and relationship is that if we can
determine the expected microphone pickup intensity over a
chunk of time from an input signal, we can compare that
expected intensity to the actual intensity that the microphone
is observing. From that comparison, we can determine if the
actual microphone intensity is significantly higher than the
expected intensity (i.e., a presence of ambient noise), and if
that is the case, we can increase the output signal volume to
combat the ambient noise.

The user will be able to begin running the calibration
process through a smartphone application, which is described
in section C. Running the calibration process will play a
constant tone signal from low to high volume through the
output speaker. During this time, the system will record the
relationship between microphone pickup intensity and input
signal intensity. The intensities of each are calculated using
the rms function available in the audioop library of python,
which calculates the rms over a chunk of values. In the end of
the calibration stage, the expected microphone intensity vs.
input signal intensity function will be stored internally, so that
it may be used later in the “Calculate Expected Mic Level”
stage, which is defined in section D. After some testing, we
discovered that this relationship forms a linear function
(y=mx+b), as exhibited in an example below in Figure 2.

Figure 2. Microphone Pickup Intensity vs. Input signal Intensity Example

We can exploit this knowledge of a linear relationship in
order to efficiently store the function and use it for later
calculations. We can use a linear fit function on the data to
determine the slope m and the y-intercept b, which are only 2
variables we need to keep to efficiently model the entire
relationship. Then, given the intensity of an input signal, we
may calculate:

Expected Mic. Intensity = m•(Input Signal Intensity) + b (1)

The values of m and b are stored in variables within the
main script at runtime, so that they may be used during the
current run of the system. These variables are also stored
externally in a JSON file. This is so that previous calibration
settings may be loaded and used, so that the user does not have
to re-calibrate the system each time the system is rebooted.

C. Smartphone Application

The app will be the UI that the end user interacts with to set
their preferences for how the DVC system will operate.
Within the app there will be three settings that the user will be
able to change, the threshold, the sensitivity and also the max
volume. In addition to these setting these preferences the app
is where the user will start the initial calibration of DVC
system. From the app these preferences will be sent to the
Raspberry Pi where they will be used as variables in the main
program.

After looking into what platform, the app would be
developed on it was decided that the focus would be put into
an iOS app. There were a few factors that went into the
decision of choosing iOS vs android. One advantage of
choosing iOS over android is the uniformity of iOS devices.
When developing for iOS devices factors such as internal
hardware and external specifications such as screen size are
known and of a limited number as opposed to the hundreds of
variations of physical specifications and software versions of
android devices. For choice of language we will be using the
Swift programming language because it was designed by
Apple specifically for iOS development and will help
eliminate any compatibility errors

In order to build this app, we will be drawing back on the
strong programming foundation that we have built up through
our years of computer science and networking courses. The
development of the app will use the knowledge that we gained
in programming courses such as CMPSCI 121, ECE 242 and
ECE 373. We will also be utilizing information that we
learned in courses such as ECE 374 to ensure that our app is
interfacing with the Raspberry pi correctly.

Testing the app will be a two-part process consisting of a
qualitative and quantitative test. The app will serve as the UI
for the DVC system, so it needs to be clear and simple enough
for an end user not be familiar with audio terminology to use.
We will test the user friendliness of the app by demoing it to
small focus groups and collecting feedback. The quantitative
test will be much easier because, we will be able to see if the
values being set in the app are being transmitted the software
correctly. Once we verify that the app is interfacing with the
Raspberry Pi and that all variables are being set correctly we

4
UMass Amherst Team 7 MDR Report SDP 2019

can move to manipulating those variables in later code
segments such as the calculate expected mic level and
Calculate scale factor which are described below.

D. Calculate Expected Mic Level

The calculate expected mic level block will be calculating
the expected microphone intensity given the input signal
intensity. This calculation will happen continuously over time
as the system is running as a means to live-monitor the sound
level of the surrounding environment. This block is
implemented entirely within software on the Raspberry Pi.

As mentioned previously in section B., the expected
microphone intensity vs. input signal intensity function is
effectively stored and modeled in software by the two values
m and b that describe the linear relationship. As chunks of an
input signal come in, the intensity over that chunk is
calculated using the rms function. Next, the expected
microphone intensity is calculated by using the input intensity
as input to Eq. (1). This expected microphone level can then
be used in further calculations to determine if any volume
adjustments should be made.

E. Calculate Scale Factor

The next step in the core program of the DVC system is
calculating the scale factor. The scale factor is the amount the
input audio signal will be multiplied by in order to reach the
desired output set by the user. In order to calculate this value
the program starts with default scale factor of 1, meaning the
input signal is not modified. The system then calculates a ratio
of the average mic power divided by the average expected mic
power, this ratio is then compared to the threshold that is set
by the user in the initial setup and if the ratio is larger than the
threshold the scale factor is increased slightly until it is no
longer larger than the threshold. To avoid the system
becoming unstable the default case for the scale factor
behavior is too decrease, so that if there is no ambient noise in
the room the volume of the audio signal will be as quiet as
possible while still maintaining a level set by the user. Once
the scale factor is calculated it will be sent over to the GPIO
pins and used to set the gain of the analog amplifier that will
be explained in the following section.

F. GPIO & Amplifier

This block will make adjustments to the signal sent to the
speaker. The GPIO pins from the Pi will set the gain of the
analog amplifier based on the scale factor calculated in the
previous module. We will use the built in GPIO pins on the
Raspberry Pi to send a string of bits to an amplifier with a
digital potentiometer. We will use variable gain techniques
learned in Electronics II to determine the resistance needed
from the potentiometer to achieve a specific gain. We will also
need to become familiar with how to control digitally
programmable potentiometers. This will depend on the
specific model we choose. For example, models may have
different communication set-ups, such as, serial vs parallel bit
transmission. One commercial model that seems to meet our
specifications uses two wire I2C communication protocol

(series bit transmission).[4]
In order to test this block, we will first create the circuit on

a breadboard and manually change resistance of the
potentiometer to make sure we can achieve the desired gain
range for the amplifier. Once we have confirmed the range of
resistance needed from the potentiometer, we will order the
model that best suits this specification. Finally, we will test the
circuit with the potentiometer and confirm that our speaker
receives the correct range of amplitudes from this block before
sending out our PCB design to the manufacturer.

III. PROJECT MANAGEMENT
Table 2:

Deliverables

MDR Deliverables Status

Show proof of captured signals and
computed calibration graph

Complete

System will adjust based on threshold and
sensitivity at set value.

Complete

Wired connections (no bluetooth) Complete

Single Speaker System Complete

 Our group accomplished all MDR goals. Our system achieves
the base case of increasing volume when there is more than
1.5 times the expected microphone intensity. Once the volume
has increased enough so that the measured mic intensity is
less than 1.5 times the expected mic intensity, the volume
stops increasing and tries to decrease. With this base case
working, it proves that is possible to achieve a fully
functioning system by demo day.
 Next semester, most of the work remaining has to do with
user settings and integration of the dynamic variables
sensitivity and threshold. Both of these variables are currently
set on the Pi. In order to choose appropriate ranges for these
variables, our group plans on testing different values by
surveying a sample of friends. These surveys will be based on
overall product satisfaction with regard to response
time(Sensitivity) and ambient noise to speaker volume
ratio(Threshold). Once the ranges for these parameters have
been decided, we will develop the iOS app that allows the user
to set these variables.
 Our team consists of three Computer Systems Engineering
students and one Electrical Engineering student. This means
that our group has a strong software background. The different
roles of our project have been split up according to the
abilities of each member. The chart below shows the
responsibilities of each team member.

5
UMass Amherst Team 7 MDR Report SDP 2019

 Figure 3: Tasks

 The core software design has been split up between all 4
group members. This is the largest, and most time consuming
part of the project. PCB design will be the responsibility of
Harry, as he is the electrical engineer on the team. Ryan has
some experience in app development and therefore will handle
the iOS app for our project. The other software related parts
of the project were split up evenly between Nicholas and
Rahaun, as they are computer systems engineers.
 In order to keep a workflow and schedule, our team has
weekly meetings amongst ourselves and with our advisor. The
communication between our group consists of e-mail, text,
and in person meetings. So far, we have taken a very unified
approach towards completing our project. This means that we
have been working on our portions of the project together
rather than combining individual work every week. This has
worked well so far, but we will likely need to have a more
individual approach next semester once our system becomes
more dynamic.
 The Gantt Chart below shows what we have done so far
and where we expect to be throughout next semester.

Figure 4: Gantt Chart

IV. CONCLUSION

So far we have met all of our proposed deliverables and
deadlines for MDR including manually set variables and wired
connections as well as being able to show proof of captured
signals, computed calibration graph, and additional graphs
such as how the scale factor changes over time. By CDR we
will have a working app so variables will no longer be set in
code a wireless mic will also replace the current wired version
and finally our amplification will move to a an analog devices
instead of being handled internally by the Raspberry Pi. One
of the main challenges moving forward is making sure that our
data transmission rates maintain high enough speeds to do our
signal processing in near realtime after moving to wireless
components. Another challenge we will face is designing a UI
that can be easily understood by the a user without any
knowledge of the system. Seeing as how the last problem is
not quantitative with a concrete solution, it will be a unique
challenge that we will have to approach differently from any
traditional problem we have encountered as engineering
students. At this point we need to implement a few more
components such as the analog amplifier and the final system
enclosure and then the project comes down to a large amount
of testing and fine tuning in order to create a system that is
enjoyable and convenient to use.

REFERENCES
[1] Ww1.microchip.com. (2018). ATmega48A/PA/88A/PA/168A/PA/328/P

Data Sheet. [online] Available at:
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-
88A-PA-168A-PA-328-P-DS-DS40002061A.pdf [Accessed 20 Dec.
2018].

[2] Store.arduino.cc. (2018). Arduino Uno Rev3. [online] Available at:
https://store.arduino.cc/usa/arduino-uno-rev3 [Accessed 20 Dec. 2018].

[3] Raspberry Pi. (2018). Raspberry Pi 3 Model B+ - Raspberry Pi. [online]
Available at: https://www.raspberrypi.org/products/raspberry-pi-3-
model-b-plus/ [Accessed 20 Dec. 2018].

[4] C. Wells, J. Becker, Low-Cost Digital Programmable Gain Amplifier
Reference Design. Texas Instruments, 2015.

[5] IoT Innovation. (2018). The Impact of Smart Homes Technology | IoT
Innovation. [online] Available at: https://internet-of-things-
innovation.com/insights/the-blog/smart-homes-technology-
impact/#.XBw691VKjIU [Accessed 21 Dec. 2018].

[6] Toaelectronics.com. (2018). Products - TOA Electronics. [online]
Available at: http://www.toaelectronics.com/products/audio-signal-
processors/dp-l2-digital-ambient-noise-controller [Accessed 21 Dec.
2018].

[7] Amazon.com. (2018). [online] Available at:
https://www.amazon.com/International-Controls-Systems-TVSR-
Automatic/dp/B000Q37TBY/ref=cm_cr_arp_d_product_top?ie=UTF8
[Accessed 21 Dec. 2018].

