Team Turn Up

March 4, 2019

Advisor: Professor Pishro-Nik

Team Members

Nicholas Kafasis CSE

Ryan Walsh CSE

Harold Healy EE

Rahaun Perkins CSE

Problem Statement

-In environments with dynamic noise levels, frequent volume adjustments for Speakers and TVs are a nuisance.

-Our system will be an intermediary device that regulates the volume of audio devices based on levels of ambient noise in a room.

Our Solution: Block Diagram

MCP41010 Digital Potentiometer

- Potentiometer values of 0 Ω to 10 $k\Omega$
- Programming handled by an SPI connection to the Raspberry Pi

LM386n-4 Low Voltage Audio Power Amplifier

- Allows for different gain values based on wiring of circuit
 - Gain range from 20-200
- Circuit wired for gain of 200

Figure 12. LM386 with Gain = 200

Circuit Diagram

GPIO Integration

Raspberry Pi Serial Peripheral Interface (SPI)

- SCLK Serial CLocK
- o CE Chip Enable (often called Chip Select)
- MOSI Master Out Slave In
- Sends data to the digital potentiometer
 - 0x00 0xFF is equivalent to 0 Ω 10 kΩ
 - Used to calculate expected scale factor
- Potentiometer used to calculate the input value of the audio amplifier

Pot	Pin 2		Pit	1.00.	10	
1	DC.Power	3.38	1		14	DC Power
	SDAL FC	-OPIO 2	3	1		DC Power
	SELLIC	GPIO 3	5	6	GND	a construction of
	OPIO_OCLE	GPIO 4	7		GPI0 14	TXD0
- <u>1</u>		GNB	. 9	16	GPI0 1*	RXD0
11日 町	GPID GENG	GPIO 17	11	12	GP10 18	GPIO_GENT
36N	OPIO GEN2	GPIO 27	13	14	GND	26.0070002000
IT AGK	GPIO GENO	GF10 22	15	16	GPIO 23	GP10_0E2N4
E (18)	DC Power	AAV.	11	18	OPIO 24	GPID, GEN3
1 調用	SPE MOSE	GPICI 16	15	24	GND	1-25222
16	SEE MISO	GPIO S	21	22	GPI0 25	OPIO GENU
	309 CLK	GPIO II	24	24	OPIO 8	SPC CEO N
20 F	1	GND	25	26	0190-7	SPI CEL N
1 Hay 1	PUTD EEPROM	DNC	17	28	DAME	PC ID EEPROM
日刊時 日		GPIO 5	29	30	GND	Second Contraction
主任 何 《		GPIO 6	31	32	0190-12	
		GP90 13	33	34	GND	
		GPRI 19	35	36	GPRI 16	
10		GP10 26	37	38	GP10 20	
100 30	Dia 40	GND	39	-48	GP90.21	
Print and				A COLUMN TWO IS NOT		

$$Exp. Scale \ Factor = \frac{255 - new \ pot \ value}{255 - base \ pot \ value}$$

GPIO pinout

Command			Channel			Value									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Sensitivity and Threshold

Sensitivity set by changing size of average mic intensity moving window

- Range of 1 to 5
- Sensitivity 1 corresponds to a window size of 4096 samples
 - System can increase from min to max in 22.24s
- Sensitivity 5 corresponds to a window size of 256 samples
 - System can increase from min to max in 1.39s

Threshold set at a constant 1.5 (subject to change)

 We have a range of thresholds available but for simplicity and ease of use, we decided to phase this out of user settings.

iOS Application: User Interface

- Written in Swift
- iOS app user flow 5 stages:
 - Welcome Page
 - Device Discovery
 - Calibration
 - User Settings
 - Summary
- Walks user through setting up a device in an effortless fashion

iOS App: iPhone-Device Network Connection

- iPhone discovers and communicates with device via Wi-Fi:
 - No prior knowledge of device IP
- Discovery Process
 - TurnUp device runs UDP server listening for discovery message
 - iPhone sends UDP broadcast discovery message, opens TCP server to listen for response
 - Includes port number that device may respond to
 - TurnUp device responds to iPhone TCP server, opens up TCP server for user connections
 - Response includes device name and a port number that iPhone may connect to
 - iPhone may now connect to this TCP server on the device to send necessary commands
 - E.g. start calibration message, user settings

	Carrier 🗢	11:32 PM	
	Total	(40.0.0.5)	_
	TurnOp T	(10.0.0.5)	
		1 device(s) found.	
Į.		Discover	
		\frown	

CDR Deliverables

- ✓ Basic IOS App that will allow user to choose sensitivity and threshold based with sliders
 - Choice of threshold by end user is subject to change upon further review of its necessity
- System will have the full range of sensitivity(1-10) based on weights of weighted average and size of calculation window
 - Sensitivity levels scaled down to 5, as 10 levels was deemed to precise
- ✓ System will have full range of thresholds
 - System currently allows for the setting of a threshold, but the impact on overall performance is negligible compared to sensitivity

CDR Deliverables

- X Microphone will communicate wirelessly with Pi
 - Currently using a wired connection between the microphone and Raspberry Pi
- ✓ Analog Amplification with Digitally Programmable Gain
 - Amplification being handled by system circuit containing a digitally programmable potentiometer in combination with an analog amplifier.

FPR

- Finish bluetooth integration
- Test on larger speakers
- Integrate PCB
- App UI refinement
- Finish enclosure for Raspberry Pi and PCB

DEMO

Listen.py

4. Continuously compute the moving averages of mic intensity and expected mic intensity

5. Continuously compute ratio of mic intensity average to expected mic intensity average

6. If ratio rises over threshold \rightarrow increase scale factor;

Otherwise: If ratio is larger than $1 \rightarrow decrease$ scale factor

Otherwise: keep scale factor at 1

MDR Deliverables: Data Plots - Calibration Graph

Mic Pickup Intensity vs. Input Signal Intensity

MDR Deliverables: Data Plots

Mic Intensity & Expected Mic Intensity over Time

MDR Deliverables: Data Plots

Moving Averages of Mic Intensity & Expected Mic Intensity over Time

MDR Deliverables: Data Plots

Scale Factor and Avg. Mic Intensity to Avg. Expected Mic Intensity Ratio over Time

Project Breakdown and Responsibilities

Task name		Start date	End date	Assigned
- TumUp SDP		10/22/2018	04/07/2019	
- Development	i	10/22/2018	04/07/2019	
 Core Software Design 	i	10/22/2018	03/13/2019	
Calibration	(i)	10/22/2018	11/11/2018	R R
Real Time Audio Monitoring	(i)	11/12/2018	03/13/2019	NR
Adjustment Algorithms	(i)	11/12/2018	03/13/2019	NH
Website Development	(i)	12/01/2018	12/19/2018	Nick Kafasis
Wireless Mic Integration	i	12/01/2018	12/29/2018	Rahaun Perkins
PCB Design	(i)	12/10/2018	01/31/2019	Harold Healy
PCB Integration	(i)	02/01/2019	03/10/2019	Harold Healy
App Development	i	02/01/2019	03/29/2019	R rtwalsh
Refinement	i	02/01/2019	04/07/2019	Rahaun Perkins
Enclosure Development	(j)	03/11/2019	04/07/2019	Harold Healy

Gantt Chart

CDR Deliverables

- Basic IOS App that will allow user to choose sensitivity and threshold based with sliders (Ryan)
- System will have the full range of sensitivity(1-10) based on weights of weighted average and size of calculation window (Ryan/Nick)
- System will have full range of thresholds (Expected range of (1.1 - 2) with actual values TBD) (Ryan/Rahaun)

CDR Deliverables

- Microphone will communicate wirelessly with Pi (Rahaun)
- Analog Amplification with Digitally Programmable Gain (Harry)
 - (Instead of Digital Scaling of Samples)

Testing and Validation

- **Testing**: Play a tone through speaker, measure and plot data.
- **Validation**: Graphically show that system increases gain after X seconds of Mic intensity above threshold R
- X is set by sensitivity
 - (expected range is 10 seconds for Min value and close to 0 for Max value)
- R set by threshold setting (expected range of 1.1-2)
- Consumer satisfaction survey

Challenges Moving Forward

- Integrating the wireless microphone
 - Making sure data is transferred fast enough
- Determining reasonable user preferences through research and polling
- Delivering a clear and concise user interface

Demo

UMassAmherst Thank you

Questions?