Midway Design Review

Solar Winds - Team 6 December 7th, 2018 Faculty Advisor: Stephen Frasier

Meet the Team

Ajey Pandey EE

Jason Sproviero EE

Jayme Gordon EE

Richard Kornitsky EE

Nicholas McCarthy EE

Problem Statement

- Cooling draws a significant amount of power
- Cooling is a "peaky" load
 - Daily, cooling peaks around 3-4PM
 - Annually, cooling peaks in late summer
- Solar power makes peaky loads even peakier
 - Phenomenon known as the "duck curve"
- Grid-scale battery storage is in research phase
- Industry focus has been storing electrical (solar) power as electrical energy

Our Solution: Solar Winds

Store electrical power as thermal energy during non-peak load times

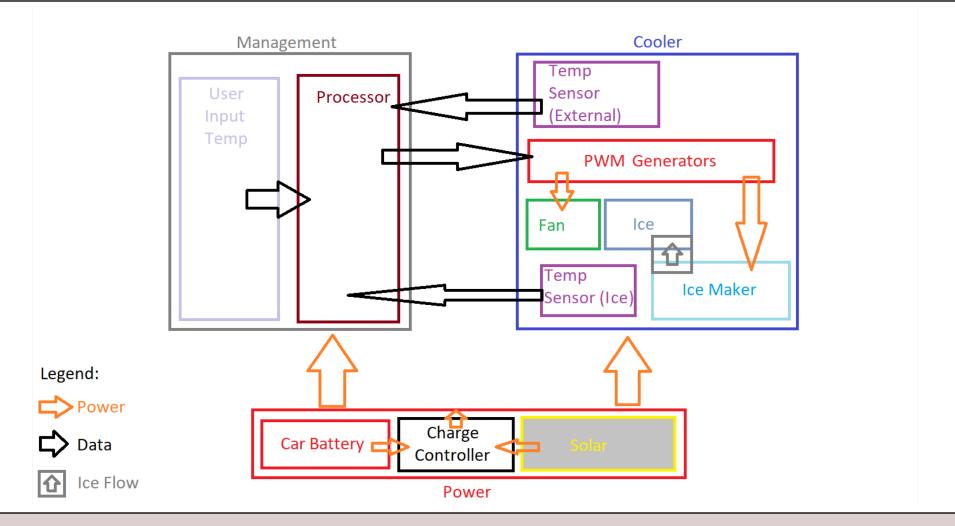
- Develop contained cooling system
- Store thermal energy in liquid solution
- Deliver cooling with stored energy

"Country Fair" Use Case

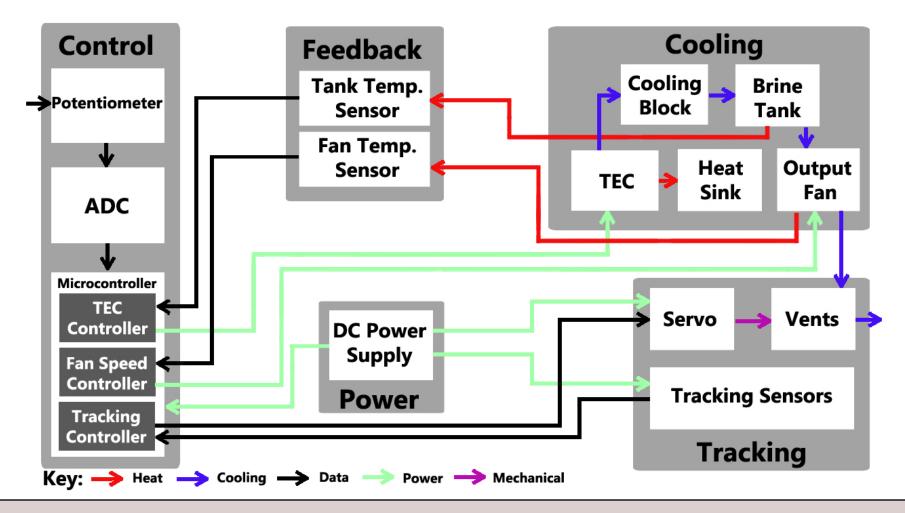
- Temperature is ~ 80° F
- User has a van or light-duty pickup truck
- Cooling system distributes air
- Noticeably cool small volume by ~ 3.5° F

Design Alternatives

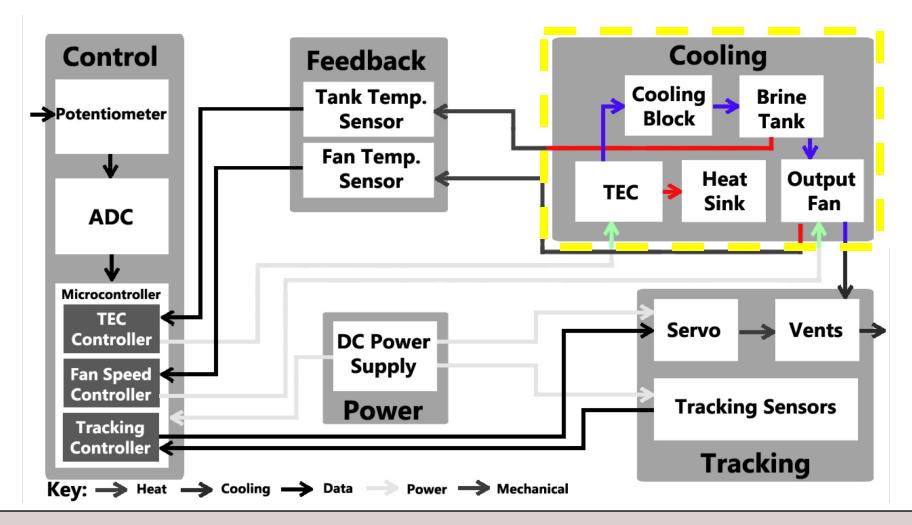
- Compressor
 - Cons: Moving parts, Thermodynamics
 - Our design: Peltier cooler
- Ice Maker
 - Cons: Power demand, insulator
 - Our design: Brine
- Cold sink
 - This design: Attach heat sink to cold side of TEC and insert into tank
 - Cons: Difficulty interfacing, leakage, mounting, heat transfer
 - Our design: Water cooling block


Previous Specifications

- 1. Store 3000 BTU of energy as ice or liquid cooling solution
- 2. Cool a 1 ft x 2 ft x 5 ft area by $3.5^{\circ}F$ for 1.5 hours
- 3. Store energy using photovoltaic input, with a DC power source as a backup
- 4. Fit a form factor such that two people can carry it into a van or light-duty pickup truck
- Be constructed such that it can be disassembled with basic tools, like Phillips-Head screwdrivers or standardsize wrenches


Revised Specifications

- Energy storage scaled down by a factor of 5 to demonstrate critical functionality
- Previous BTU specification was calculated without thermodynamics knowledge
- 1. Cool 2 cubic foot area by 3.5° F for 1.5 hours
- Store electrical power as thermal energy during nonpeak load times
- 3. Fit a form factor such that two people can carry it into a van or light-duty pickup truck


Previous Block Diagram

Redesigned Block Diagram

Redesigned Block Diagram

Changes in Implementation

Our solution: Store electrical power as thermal energy during non-peak load times

Replace ice with brine

Brine demonstrates energy storage

Scale down thermal energy storage

Demonstrating functionality of solution does not rely on storage quantity

Change source of electrical power

Functionality of solution does not rely on power source

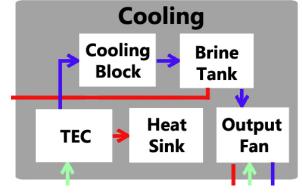
Plans To Implement Each Block

Cooling Block

Objective:

Circulate brine through pumping system to cooling block

Parts:


Thermoelectric Cooler: Laird HiTemp 387001828 (ET series)

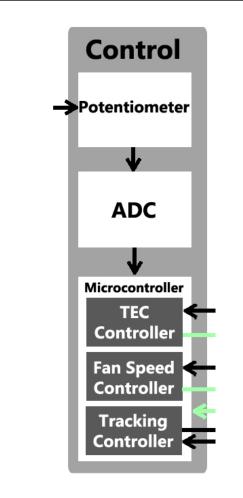
Chosen operating conditions: 24V, 192W

Maximum operating conditions: 46V, 300W

Cooling block: DIYhz Aluminum Radiator (40mm x 40mm x12mm)

Liquid Cooler Heat Sink: CORSAIR Hydro Series H60 120mm

Control Block


Objective:

User control of cooling

Parts:

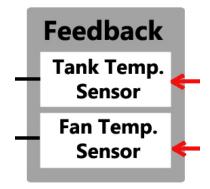
User Input: Control circuitry

Microcontroller: ATmega328

Feedback Block

Objective:

Report data from cooling system to microcontroller


Parts:

Tank temperature sensor: DS12B20 integrated circuit

Selection criteria: Waterproof

Fan temperature sensor: LM35 integrated circuit

Selection criteria: Readily available

Tracking Block

Objective:

Develop array of sensors to

track user

Parts:

Servomotor: Direct vents towards user

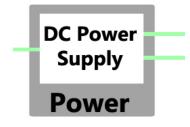
Interrupt: Allow user to manually interrupt

Sensors: Detect user motion

⇒	Servo	->	Vents	┝				
->	Tracki	ng So	ensors	L				
	Tra	acki	ng					

Power Block

Objective:


Provide power to each block

Parts:

Power Supply:

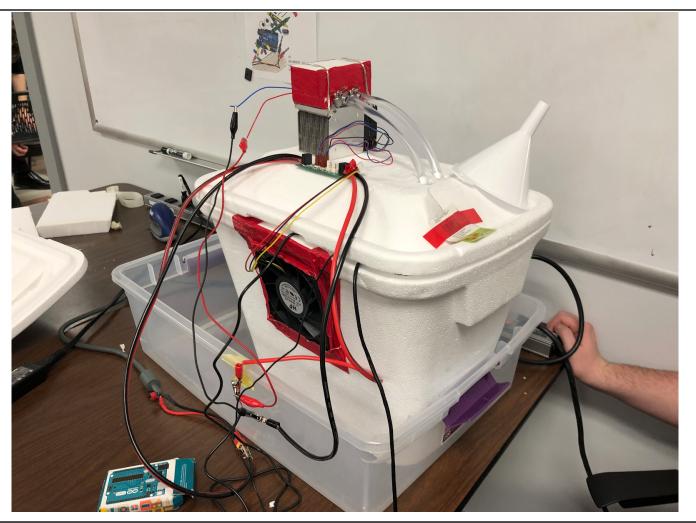
Chosen operating condition: 24V

Maximum operating conditions: 200V,16.5A, 3300W

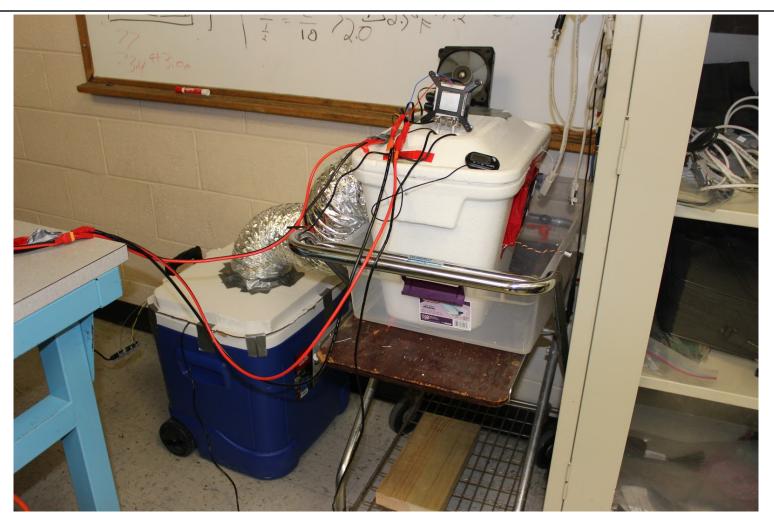
MDR Deliverables (Previously Proposed)

- Store 3000 BTU of energy as ice or liquid cooling solution. This will be measured by measuring temperature of ice/cooling solution of a known specific heat, then calculating energy from the temperature differential.
- Cool a 1 ft x 2 ft x 5 ft area by 3.5°F for 1.5 hours. This will be measured with a thermometer outside the cooler. We project this will require 2000 BTU/hour to achieve.
- 3. Fit a form factor such that two people can carry it into a van or light-duty pickup truck.
- 4. Provide a paper design on sensors to enable directionality and prediction.

MDR Deliverables (Updated)


- Energy storage scaled down by a factor of 5 to demonstrate critical functionality
- Previous BTU specification was calculated without thermodynamics knowledge
- 1. Cool 2 cubic foot area by 3.5° F for 1.5 hours
- 2. Fit a form factor such that two people can carry it into a van or light-duty pickup truck
- 3. Provide a paper design on sensors to enable directionality and prediction

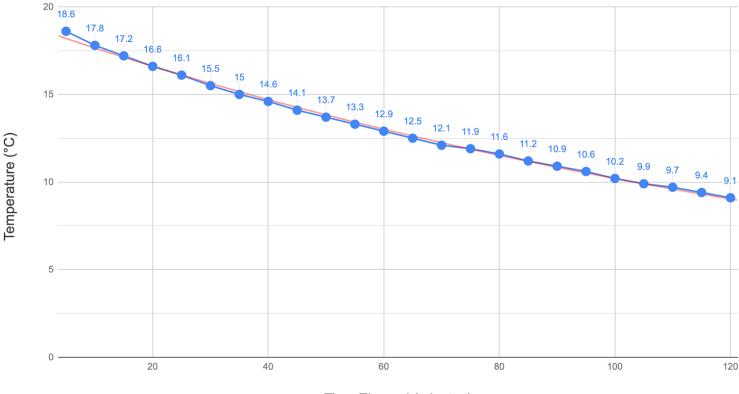
MDR Deliverables (Updated)


- Energy storage scaled down by a factor of 5 to demonstrate critical functionality
- Previous BTU specification was calculated without thermodynamics knowledge
- 1. ✓ Cool 2 cubic foot area by 3.5° F for 1.5 hours
- ✓ Fit a form factor such that two people can carry it into a van or light-duty pickup truck
- ✓ Provide a paper design on sensors to enable directionality and prediction

Demo of MDR Deliverables

Prototype MK-I

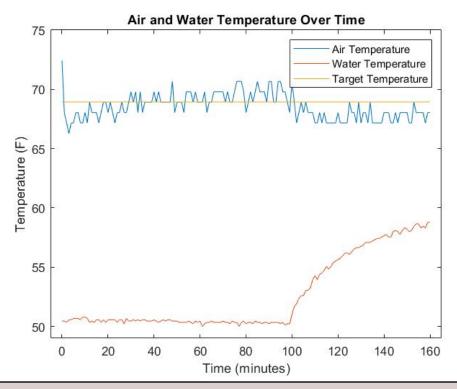
Prototype MK-II



Prototype MK-II

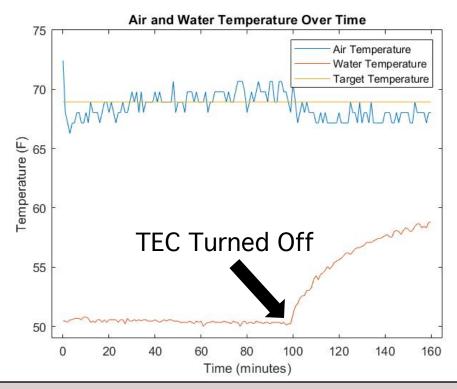
Testing Water Cooling

Parameters: 24 Volts to TEC, Output Fan off, 1 gallon water, 60 grams salt

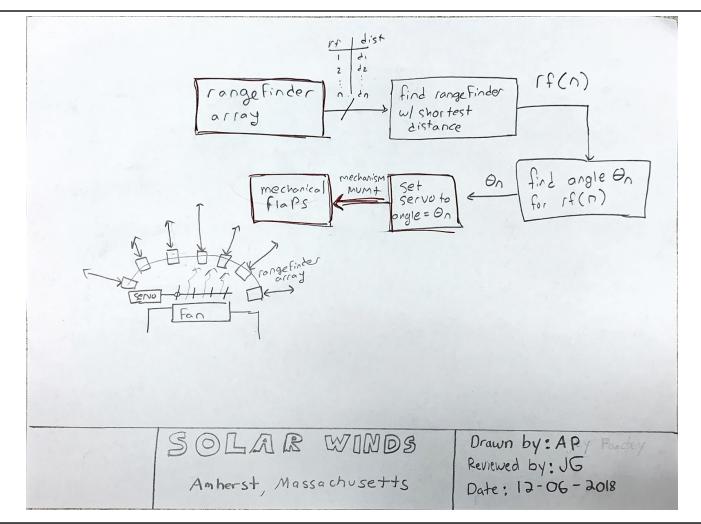


Temperature of Water Inside Foam Cooler Over Time

Time Elapsed (minutes)


Testing Air Cooling

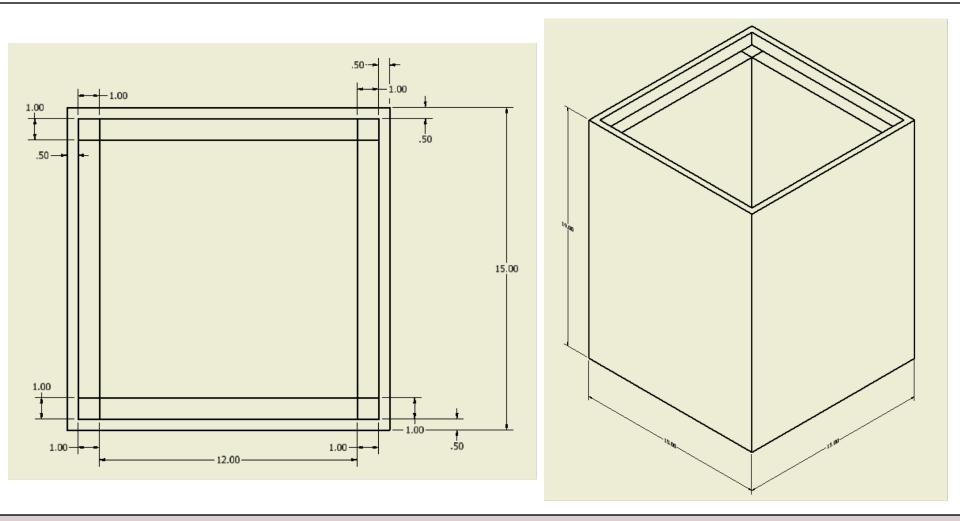
Parameters: 24 Volts to TEC, Output Fan on, 1 gallon water, 60 grams salt Initial/Ambient Temperature: 72.4° F, Target Output Temperature: 68.9° F, Average Output Temperature: 68.5° F



Testing Air Cooling

Parameters: 24 Volts to TEC, Output Fan on, 1 gallon water, 60 grams salt Initial/Ambient Temperature: 72.4° F, Target Output Temperature: 68.9° F, Average Output Temperature: 68.5° F

Paper Design on Sensors


Proposed CDR Deliverables

- Demonstration of Complete System Functionality
 - Build custom cooler box Jayme & Richard
 - Data collection tool Jayme & Nick
 - Feedback loop & temperature control Nick & Ajey
 - Printed circuit board (PCB) Jason
 - Sensors for directionality & prediction Ajey & Richard

Leaking Foam Cooler

Solution: Custom Built Cooler

Gantt Chart

	Dates											
	Jan 22	Jan 29	Feb 5	Feb 12	Feb 19	Feb 26	Mar 5	Mar 12	Mar 19	Mar 26	Apr 2	Apr 9
Sensors for directionality & Prediction (Richard + Ajey)												
Refinement of Sensors for directionality & Prediction (Richard + Ajey)												
Custom Cooler Box built (Jayme + Richard)												
Protoboard for Microcontroller (Jason)												
PCB for Microcontroller (Jason)												
Program Feedback Loop (Nick + Ajey)												
Normalize Temperature Sensors (Nick + Ajey)												
Add User Input (Ajey + Nick)												
Data Collection Tool (Jayme + Nick)												
Refinement of Data Collection Tool (Jayme + Nick)												
Heat Transfer Analysis (Ajey + Richard)												
Heat Transfer Testing (Ajey + Richard)												
Measure Cooling Performance (Nick)												
CDR Documentation (All)												
CDR Preparation												
CDR Presentation												
Project Refinement												

Individual Responsibilities

Ajey - Sensors for directionality & prediction, program feedback loop, normalize temperature sensors, add user input, heat transfer analysis & testing

Jason - Protoboard & PCB for microcontroller

Jayme - Custom cooler box built, data collection tool

Nick - Program feedback loop, normalize temperature sensors, add user input, data collection tool

Richard - Sensors for directionality & prediction, custom cooler box built, heat transfer analysis & testing

THANK YOU