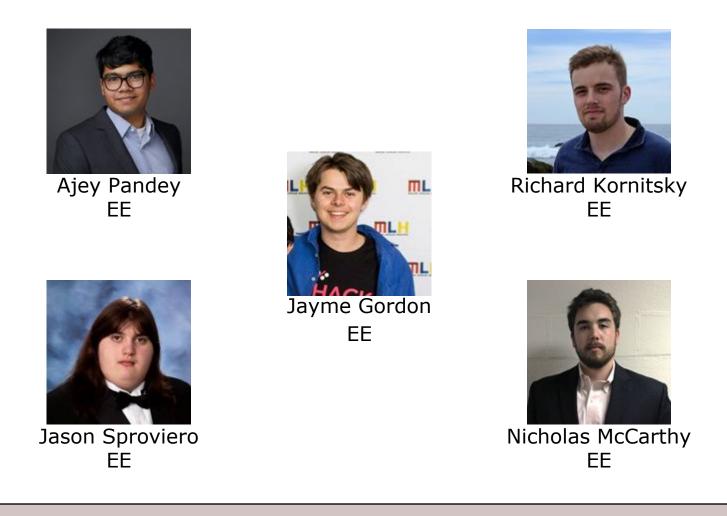

UMassAmherst

Final Project Review

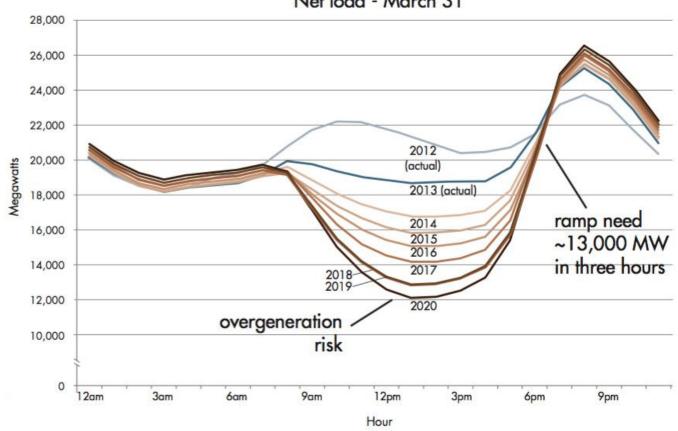
Solid State Air Conditioning with Thermal Storage


Solar Winds - Team 6 April 23rd, 2019

Faculty Advisor: Stephen Frasier

SOLAR WINDS

UMassAmherst


Meet the Team

Problem Statement

- Cooling draws a significant amount of power
- Present cooling solutions require constant power supply
- Scheduled blackouts occur in developing countries
- Energy storage necessary for generation such as solar and wind
- Industry focus has been storing electric (solar) power as electrical energy

Duck Curve

Net load - March 31

Our Solution: Solar Winds

Store electrical power as thermal energy during non-peak load times

- Develop contained cooling system
- Store thermal energy in liquid solution
- Deliver cooling with stored energy

Use Case: County Fair

- Temperature is ~ 80°F
- User has a van or light-duty pickup truck
- Cooling system distributes air
- Noticeably cool small volume by ~ 3.5°F

Table of Requirements & Specifications

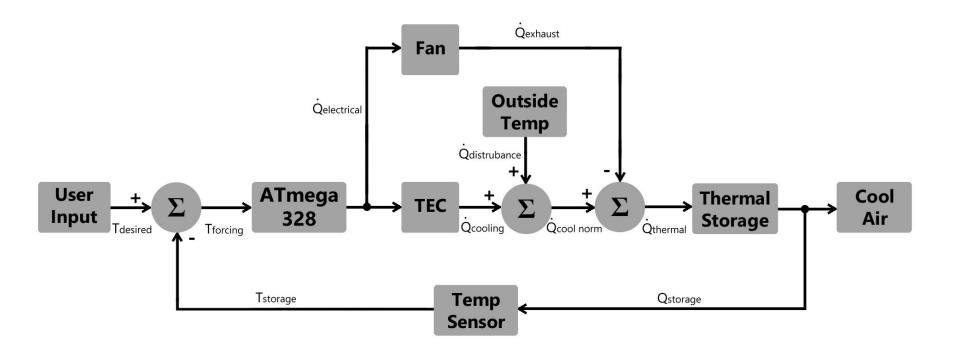
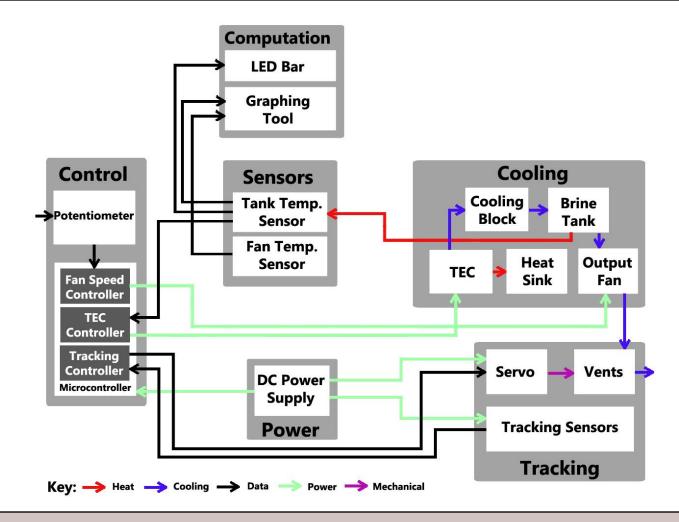

Requirement	Specifications	Value
portable	dry weight	< 150 lb
•	size	< 20 cuft
cooling	air cooling	3.5° F
responsive	water cooling	< 6 hours

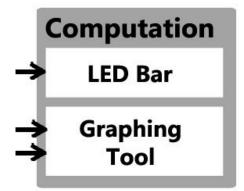
Table of Requirements & Specifications


Requirement	Specifications	Value	Actual
portable	dry weight	< 150 lb	60 lb 🗸
	size	< 20 cuft	20.8 cuft 🗸
cooling	air cooling	3.5° F	3.9°F 🗸
responsive	water cooling	< 6 hours	3 hours 🗸

System Overview: Implementation of each Block

System Feedback

System Overview: Block Diagram


Computational Block

Objective:

Data collection and graphing

Parts:

Single-board Computer: Raspberry Pi 3 Model B+

System Overview: Individual Responsibilities

Ajey - Sensors for directionality & prediction, program feedback loop, normalize temperature sensors, add user input, heat transfer analysis & testing, Power flow analysis efficiency report

Jason - Protoboard & PCB for microcontroller, user interface/ switching, cable management system (CMS), feedback hardware

Jayme - Custom cooler box built, data collection tool, Graphical data presentation tool, *user interface/ switching, cable management system* (CMS)

Nick - Program feedback loop, normalize temperature sensors, add user input, user interface/ switching, cable management system (CMS) Richard - Sensors for directionality & prediction, custom cooler box built, heat transfer analysis & testing

Note: Italicization marks added responsibility

FPR Deliverables

Refine Complete System Functionality

- Refine data collection tool Jayme
- Test & optimize feedback controllers Nick & Ajey
- Refine printed circuit board (PCB) Jason
- Refine directionality Ajey & Richard

Added Goals

- Graphical data presentation tool Jayme
- Power flow analysis efficiency report Ajey
- Battery gauge Ajey & Jason

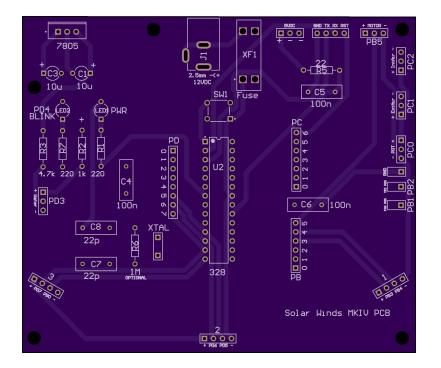
FPR Deliverables

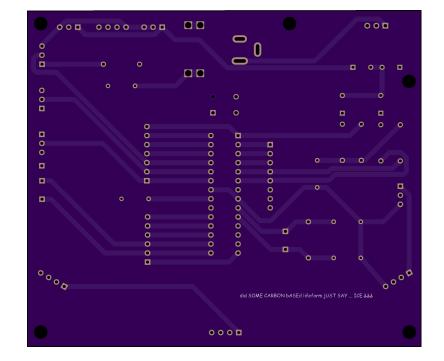
Refine Complete System Functionality

- Refine data collection tool Jayme
- Test & optimize feedback controllers Nick & Ajey
- Refine printed circuit board (PCB) Jason
- Refine directionality Ajey & Richard

Added Goals

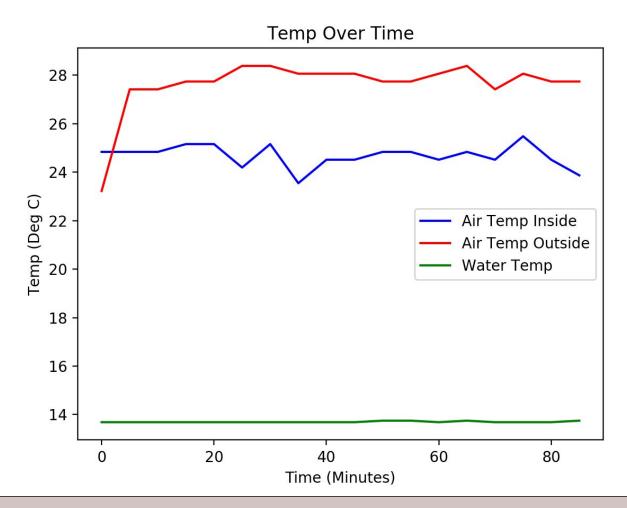
- ✓ Graphical data presentation tool Jayme
- Power flow analysis efficiency report Ajey
- Battery gauge Ajey & Jason

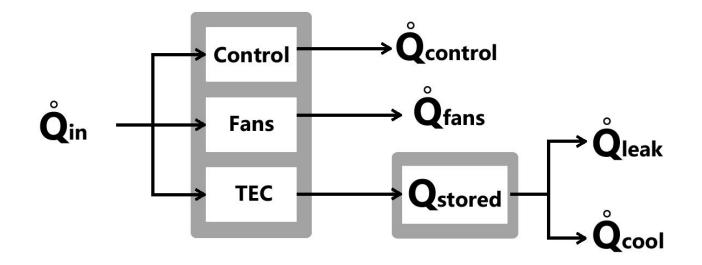

Test & optimize feedback controllers - Nick & Ajey


Loop:

```
[baseTemp, fanSpeed] = readInput()
tankTemp = readTank()
if tankTemp > baseTemp:
   powerTEC(on)
else
   powerTEC(off)
fanPWM(fanSpeed)
delay(1 min)
```

UMassAmherst


Refine printed circuit board (PCB) - Jason



UMassAmherst

Graphical data presentation tool - Jayme

Power flow analysis efficiency report - Ajey

Mapping of Power Flow

- Storage rate / total power input: 2.9%
- Storage rate / TEC power input: 3.5%
- Efficiency could be improved by:
 - Replacing TEC with heat engine cooling system
 - \circ $\,$ Adjusting circulation flow rate

Cost Breakdown

Device	Quantity	Cost for 1 Unit	Cost For 1000 Units
12V DC Power Supply	1	\$20	\$20
24V DC Power Supply	1	\$35	\$30
ATmega328	1	\$1.96	\$1.62
Closed Loop Coolers	2	\$75	\$75
Enclosure	1	\$25	\$25
Insulation	11.2 ft. ²	\$6	\$3
Thermocouple	1	\$8	\$5
PCB	1	\$27	\$13
PC High Volume Fan	1	\$12	\$8
Pump	2	\$12	\$9
Raspberry PI	1	\$30	\$22
TEC	2	\$150	\$138
Tubing	15 ft.	\$3	\$1.50
Total	-	\$404	\$351

Plans for Compelling Demo Days

- 1. Water lines clamped in front with food coloring
- 2. Plexiglass top to show audience internals of system
- 3. Drain and Fill Pumps

Note: Italicization to indicate Good faith Reach Goals

Demonstration