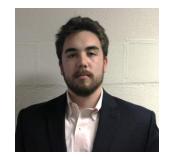
Comprehensive Design Review

Solar Winds - Team 6 March 5th, 2019 Faculty Advisor: Stephen Frasier

Meet the Team

Ajey Pandey EE


Jason Sproviero EE

Jayme Gordon EE

Richard Kornitsky EE

Nicholas McCarthy EE

Outline

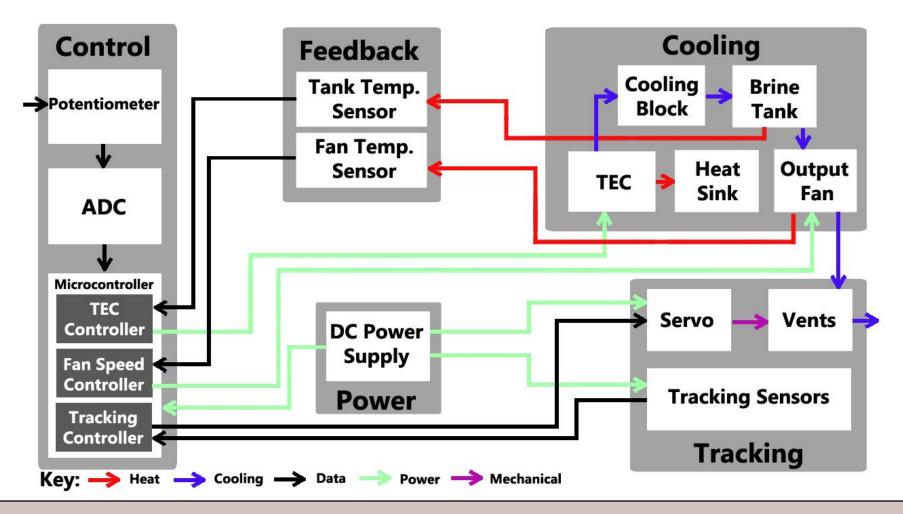
- Review of Project
 - Problem Statement & Solution
 - Use Case: County Fair
 - System Overview
 - Block Diagram
 - Individual Blocks
- CDR Deliverables
 - Demonstration at end

- FPR Goals & Plan to Achieve
 - Table of Requirements & Specifications
 - Proposed FPR Deliverables
 - Gantt Chart
 - Individual Responsibilities
- Demonstration

Problem Statement

- Cooling draws a significant amount of power
- Cooling is a "peaky" load
 - Daily, cooling peaks around 3-4PM
 - Annually, cooling peaks in late summer
- Solar power makes peaky loads even peakier
 - Phenomenon known as the "duck curve"
- Grid-scale battery storage is in research phase
- Industry focus has been storing electrical (solar) power as electrical energy

Our Solution: Solar Winds


Store electrical power as thermal energy during non-peak load times

- Develop contained cooling system
- Store thermal energy in liquid solution
- Deliver cooling with stored energy

Use Case: County Fair

- Temperature is ~ 80° F
- User has a van or light-duty pickup truck
- Cooling system distributes air
- Noticeably cool small volume by ~ 3.5° F

System Overview: Block Diagram

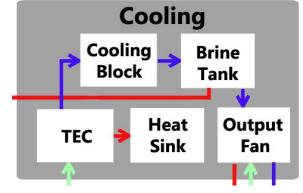
System Overview: Implementation of each Block

Cooling Block

Objective:

Circulate brine through pumping system to cooling block

Parts:


Thermoelectric Cooler: Laird HiTemp 387001828 (ET series)

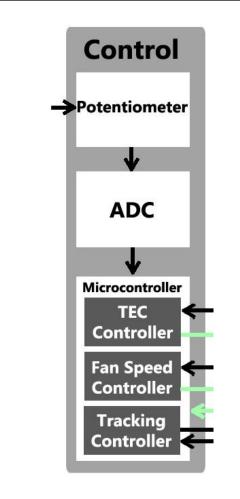
Chosen operating conditions: 24V, 192W

Maximum operating conditions: 46V, 300W

Cooling block: DIYhz Aluminum Radiator (40mm x 40mm x12mm)

Liquid Cooler Heat Sink: CORSAIR Hydro Series H60 120mm

Control Block


Objective:

User control of cooling

Parts:

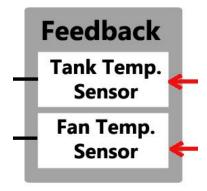
User Input: Control circuitry

Microcontroller: ATmega328

Feedback Block

Objective:

Report data from cooling system to microcontroller


Parts:

Tank temperature sensor: DS12B20 integrated circuit

Selection criteria: Waterproof

Fan temperature sensor: LM35 integrated circuit

Selection criteria: Readily available

Tracking Block

Objective:

Develop array of sensors to

track user

Parts:

Servomotor: Direct vents towards user

Interrupt: Allow user to manually interrupt

Sensors: Detect user motion

	· · · · · · · · · · · · · · · · · · ·				
-	Servo –	Vents	>		
->	Tracking	Sensors	l		
	Trac	king			

Power Block

Objective:

Provide power to each block

Parts:

Power Supply:

Chosen operating condition: 24V

Maximum operating conditions: 24V, 20A, 480W

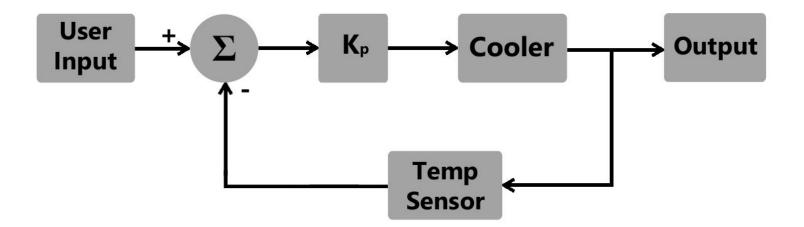
CDR Deliverables

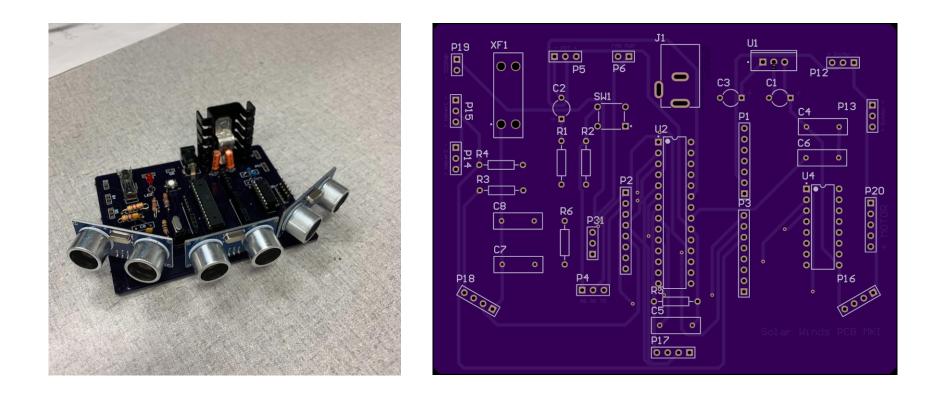
- Demonstration of Complete System Functionality
 - Build custom cooler box Jayme & Richard
 - Data collection tool Jayme & Nick
 - Feedback loop & temperature control Nick & Ajey
 - Printed circuit board (PCB) Jason
 - Sensors for directionality & prediction Ajey & Richard

CDR Deliverables

- Demonstration of Complete System Functionality
 - V Build custom cooler box Jayme & Richard
 - ✓ Data collection tool Jayme & Nick
 - ✓ Feedback loop & temperature control Nick & Ajey
 - Printed circuit board (PCB) Jason
 - Sensors for directionality & prediction Ajey & Richard

Outline of Demonstration


Build Custom Cooler Box - Jayme & Richard


Data Collection Tool - Jayme & Nick

import spidev import time import os import glob from datetime import date, datetime import RPi.GPIO as GPIO ## Import GPIO library	
GPIO.setmode(GPIO.BOARD) ## Use board pin numbering GPIO.setup(37, GPIO.OUT) ## Setup GPIO Pin 11 to OUT	
<pre>startup = 0 while startup < 5: GPI0.output(37,True) ## Turn on Led time.sleep(1) ## Wait for one second GPI0.output(37,False) ## Turn off Led time.sleep(1) ## Wait for one second startup = startup + 1</pre>	
<pre># initialize GPIO pins for digital sensor os.system('modprobe wl-gpio') os.system('modprobe wl-therm')</pre>	pi@raspberrypi: ~/Dots/DataTool/DataCSV 🗕 🗖 🗙
# Finds the correct device file that holds the temperature data	File Edit Tabs Help
base_dir = '/sys/bus/wl/devices/' device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/wl_slave'	<pre>pi@raspberrypi:~/Documents/DataTool/DataCSV \$ ls dct20190302 16:12:35.csv dct20190304 22:17:34.csv</pre>
<pre># A function that reads the sensors data def read_temp_raw(): f = open(device file, 'r') # Opens the temperature device file lines = f.readlines() # Returns the text f.close() return lines</pre>	dct20190304_21:51:07.csv dct20190304_22:17:38.csv dct20190304_22:03:45.csv dct20190304_22:17:38.csv dct20190304_22:04:15.csv pi@raspberrypi:~/Documents/DataTool/DataCSV \$
<pre># Convert the value of the sensor into a temperature for digital def read_temp(): lines = read_temp_raw() # Read the temperature 'device file'</pre>	
<pre># While the first line does not contain 'YES', wait for 0.2s # and then read the device file again. while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw()</pre>	
<pre>equals_pos = lines[1].find('t=')</pre>	
<pre>if equals_pos != -1: temp_string = lines[l][equals_pos+2:] temp_c = float(temp_string) / 1000.0 return temp_c</pre>	

Feedback Loop & Temperature Control - Nick & Ajey

Printed circuit board (PCB) - Jason

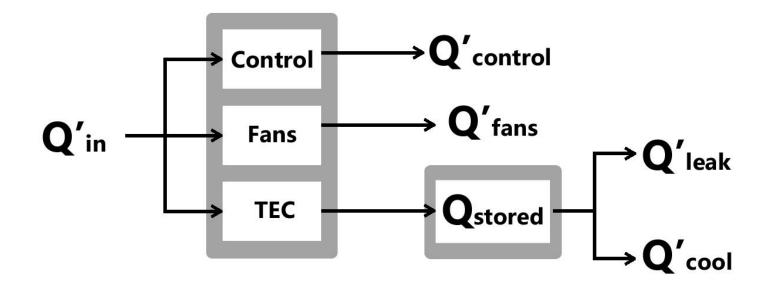
Sensors for Directionality & Prediction - Ajey & Richard

Goals for FPR

Finished Functioning System meeting Table of Requirements & Specifications:

- Refine data collection tool
- Refine directionality
- Refine feedback
- Program in C
- Refine PCB
- Test refined PCB
- Graphical data presentation tool
- Power flow analysis efficiency report

- FPR Documentation
- FPR Preparation
- FPR Presentation
- SDP Demo Day


Requirement	Specification	Value		
portable	dry weight	< 150 lb		
	size	< 20 cuft		
cooling	air cooling	3.5° F		
responsive	water cooling	< 6 hours		

Plans to Achieve FPR Goals

Proposed FPR Deliverables

- Refine Complete System Functionality
 - Refine data collection tool Jayme
 - Test & optimize feedback controllers Nick & Ajey
 - Refine printed circuit board (PCB) Jason
 - Refine directionality Ajey & Richard
- Added Goals
 - Graphical data presentation tool Jayme
 - Power flow analysis efficiency report Ajey

Mapping of Power Flow

Gantt Chart

	Mar 5	Mar 12	Mar 19	Mar 26	Apr 2	Apr 9	Apr 16	Apr 26
CDR (All)								
Refine data collection tool (Jayme)								
Refine directionality (Ajey+ Richard)								
Refine feedback (Ajey + Nick)								
Program in C (Ajey + Nick + Richard)								
Refine PCB (Jason)								
Test refined PCB (Jason)								
Graphical data presentation tool (Jayme)								
Power flow analysis efficiency report (Ajey)								
FPR Documentation (All)								
FPR Preparation (All)								
FPR Presentation (All)								
SDP Demo Day (All)								

Individual Responsibilities

Ajey - Sensors for directionality & prediction, program feedback loop, normalize temperature sensors, add user input, heat transfer analysis & testing, *Power flow analysis efficiency report*

Jason - Protoboard & PCB for microcontroller

Jayme - Custom cooler box built, data collection tool, *Graphical data presentation tool*

Nick - Program feedback loop, normalize temperature sensors, add user input, data collection tool

Richard - Sensors for directionality & prediction, custom cooler box built, heat transfer analysis & testing

Note: Strikethrough to remove responsibility, Italicization to add responsibility

Thank You

Demonstration