

1


Abstract—The EfficienSeat system is proposed as a solution to

address problems and inefficiencies presented by overcrowded
dining halls. Through real time monitoring of individual seats via
sleek, LED based, modular units on every table, users walking
through the dining hall can easily ascertain seating occupancy at a
glance and claim their seats with ease. Further, these units will
ultimately communicate this information to users outside the
dining hall via a phone application in the form of a real time map,
giving a simple visual way to determine dining hall occupancy and
viable seating locations.

I. INTRODUCTION

INING halls on our campus suffer from problems in seating
that limit their overall efficiency. During busy times,

incoming patrons require info on available seating. Without this
info people travel up and down walkways searching for a
potential open seat. Larger parties face more difficulty in
finding seats. Patrons are then faced with the equally
unfavorable choices of using their limited time walking
throughout the entirety of the dining hall an unknown amount
of times until they find a seat, or leaving and wasting the meal
swipe or money that they committed to enter the hall. This also
inhibits staff ability to quickly refill food and dishware
throughout the dining hall. These time delays, though
potentially minimal in single instances, add up and are
detrimental in a food service setting.
 We sought to design a system that would decrease these
frustrations and time delays and explored several methods of
implementation. A big factor was whether to use an active or
passive system. An active system completely controls where
patrons sit while a passive system reacts to where patrons
choose to sit. A completely active system would be akin to a
restaurant reservation system. This system would be good for
maximum seating efficiency but is not suitable for a dining hall
environment. Patrons would be averse to the idea of being told
where to sit, especially when the dining hall is relatively empty.
The sheer number of seats to manage in a dining hall also makes
this approach inefficient.

On the opposite end of the spectrum we contemplated an
entirely passive system, one that indicates seat status based on
the seats at which people choose to sit. This system senses when
someone is sitting at a particular seat and then relays this
information to patrons inside and outside the dining hall. This
system is favorable because patrons will not have to do
anything new, however, it would be expensive and complex to

D. Donoghue from Dover, Ma (e-mail: ddonoghue@umass.edu).
M. Donnelly from Springfield, Ma (e-mail: matthewdonne@umass.edu).

implement. Our solution was a hybrid of the two approaches.
With the hybrid system in mind, we then considered the

specific needs of our solution. The solution must improve time
and travel efficiency for patrons and staff. To do this, it must
accurately identify seating status and indicate this to incoming
patrons. It must also be simple to service without interrupting
the normal operation of the dining hall e.g. easy to install and
requiring infrequent maintenance. The only maintenance that
should be required would be battery replacement once a month
for individual monitoring units. The system should be IPX4 [1]
compliant to comply with food safety standards and to ensure
reliable operation.
 To satisfy these needs, the system will consist of nodes
situated on every table in the dining hall, all reporting to a
central hub. The nodes need to be small and self-sufficient in
terms of power; this coincides with the low maintenance
requirement, where routine “refilling” of power should be
monthly. Every node will be connected to a central hub,
creating a network that will reliably monitor the seating
situation and ultimately report this to the user via a phone
application. Table 1 quantifies these requirements.

K Georgadarellis from Dartmouth, Ma (e-mail: kgeorgadarel@umass.edu).
A. Jain from New Delhi, India (e-mail: aarshjain@umass.edu).

EfficienSeat

Dennis Donoghue, CSE, Matthew Donnelly, EE, Kristina Georgadarellis EE, and Aarsh Jain, EE

D

TABLE I
REQUIREMENTS AND SPECIFICATIONS

Requirement Specification

Table search functionality

Users can search for available seats
by party size through a mobile app

App users will receive timely
graphical response

Updated map displayed within 2
seconds

App users can find their
tables from the map on the
mobile app

Table locations will be accurate to ½
a table length

System can manage entire
dining hall

Can support > 100 seats

Table unit is splash-proof and
safe for use in a dining hall

Table unit is compliant with IPX4

System can accommodate
non-app users

Patrons can claim seats by pressing a
button on the Table Unit

Infrequent maintenance Monthly battery replacement

2

II. DESIGN

A. Overview

Fig 1. Block diagram of our system. There are four main blocks that make up
our system: the Table Unit, Sky Unit, Database Server, and Android App.

To solve this problem, we will design a network within a
dining hall that will have real time monitoring of seat
occupancy and consistent reporting of this data to users. The
data is accessible to users both inside and outside of the dining
hall. As shown in the block diagram in Figure 1, this network
will consist of four subsystems: 1) the aforementioned nodes -
dubbed ‘Table Units,’ 2) a ‘Sky Unit,’ 3) a database, and 4) a
phone application. The purpose of each subsystem and the
interaction between them is outlined in the overview, with more
detailed descriptions provided in the following sections.

Patrons of the dining hall, the users of our system, will
interact with it from two points: the phone application and the
Table Units. Table Units will populate the dining hall as
compact units, one per table of four seats. These units provide
the first point of user interaction within the dining hall: users
claim seats by pressing a button, and the LEDs on the unit
indicate seat status, providing a simple method of identifying
occupancy at a glance. By having an easy-to-interpret system to
claim seats, the issue of patrons marking their spots with
valuable items like phones or keys is eliminated and seat status
will be clearly marked via the LEDs, eliminating the ambiguity
of a stray coat or left behind dishware.

Seat status is reported from each Table Unit to the Sky Unit,
the central hub of the network. As the hub, it processes the
Table Unit data and functions as the medium of communication
between the Table Units and the database/app side of the
system. Alongside this, the Sky Unit will also perform table
localization; this information is used to accurately report seat
status to users via the app.

From the Sky Unit, seat status’ will be sent to the database.
The database will be constantly updated in real-time by both the
Sky Unit and the phone app so that it will contain up-to-date
information of all seats within the dining hall.

The phone application provides the other point of user
interaction with our system from outside of the dining hall.
Namely, users can view a map of the dining hall with table
occupancy, search for available seats by party size, and reserve
seats, all from the convenience of their phone. The map of the

dining hall is generated using information queried from the
database for table occupancy and the localization data for the
position of each table within the dining hall.

With a basic outline of the system’s functionality and
interactions established, the following sections delve into each
subsystem more, discussing design choices and alternatives,
protocols, and component interactions.

B. Table Unit

Fig 2. Conceptual drawing of the Table Unit design. The unit will be no more
than 10cm by 10cm and features a pushbutton for seat confirmation and
reservation, a visible LED for seat status, and an IR LED for table
localization.

The Table Unit is a small modular unit for user interaction at
the table itself containing a visual LED and button pair for each
of the table’s four seats (See Figure 2). It also contains four IR
LEDs, which will be discussed later regarding table
localization. The visual LEDs are used to indicate the status of
the seats to the user, namely whether the seat is taken or not.
The buttons are used to confirm seat reservations made from the
app and to occupy and vacate seats without the app. The final
product will be splash-proof (IPX4 compliance mentioned in
the introduction) and easy to maintain with low power
consumption. The following table shows the seat state

corresponding to the LED responses:
The following bullets guided us on selecting the processor to

be used on the Table Unit:
 The processor needs to support a wireless network

with low bandwidth and energy.
 The processor shall be able to handle at least

hundred nodes on a network.
 It should be low powered to keep the maintenance

of the unit to a minimum.
 Needs to also take input from four buttons and

output to eight LEDs.
The SAMR21 microcontroller [2] by Microchip Technology
Inc. seemed to be the right choice. The microcontroller has a
System on Chip to connect the Table Unit to a network based

TABLE II
TABLE UNIT CHAIR STATES

Chair State LED Response

Vacant OFF
Occupied ON

Reserved Slow Pulse
About to Expire Slow Pulse

3

on IEEE 802.15.4 communication protocol [3]. This is a low
bandwidth network protocol due to reduced power
requirements to run the network. The stack provided by
Microchip – Bitcloud [4] – is well supported for this
microcontroller. Some of its features are:

 Network management of more than sixty-five
thousand nodes.

 Queuing of incoming packets.
 Callbacks to confirm data received.

The project started with a few example codes in Atmel Studio
Framework to better understand the overall code that would
govern operation of the Table Unit. Simple network
communication was established between two SAMR21 boards
via their built-in RF antennas. The range of communication was
established to be beyond 50 feet through testing with a wall
barrier, this range is more than enough to communicate to any
corner of a dining common from its center. Further testing was
done including button debouncing optimization to give a
smoother interface for the user. The Table Unit will be tested
using a default set of commands including the following
responses:

 Button press shall toggle states between vacant and
occupied.

 Message received from Sky Unit shall be processed
and signified on LEDs.

 Reserved state shall go to occupied when button is
pressed.

 Timer state shall give a pulse on the corresponding
LED.

 Data shall be sent when a button is pressed at the
Table Unit which should be properly received at the
coordinator in Sky Unit.

C. Sky Unit

The Sky Unit is composed of the Atmel SAMR21G
processor and Raspberry Pi 3 board [5]. For table localization,
a Raspberry Pi NoIR camera module [6] is used. These three
components will all operate from wall power. The Sky Unit
functions as a central hub for all the Table Units, and as an
intermediate link between the Table Units and the database/app.
The SAMR21G board is used to communicate wirelessly with
the Table Units via the Atmel Bitcloud stack, as explained in
the Table Unit section. The Raspberry Pi was chosen as the
central processing system for the Sky Unit due to its power and
versatility as a computer coupled with easy-to-use functionality
and an abundance of available documentation. For our database
needs, we ultimately decided upon Amazon Web Services
(AWS) - which is discussed in more detail in Section II.D - and
this influenced the functionality of our Pi. Python code using
Boto 3, Amazon’s own SDK for Python [7], [8], is used on the
Pi to communicate data between the Table Units and the
database. Given the plentiful documentation for Boto 3 from
AWS, as well as the convenient use of Python scripts aboard
the Pi, this communication method proved to be the most
efficient way of both writing to and reading from the database
with the Pi. By utilizing the Atmel Bitcloud stack and the Boto
3 SDK, we have successful communication between the Table

Units and the database.
Alternatives for interfacing the Pi with the database were

explored as per the database chosen; Boto 3 was our final choice
as we settled on Amazon DynamoDB [9] with which Boto 3 is
closely coupled, but a previous option was Amazon RDS [10] -
the choice to switch databases is discussed in detail in the
following section.

To communicate seating data efficiently throughout the
system, we needed to design a protocol for the information
being sent. To do this, we identified the pertinent
information required for successful system operation, which
boiled down to Table ID (with what Table Unit are we
communicating?), Command Type (are we changing seat
occupancy? telling the Table Unit to sleep?), and Data (seat is
now occupied, Table Unit action). Our resultant protocol
consists of a five-byte string, as displayed in the table below
(Table III).

The first two bytes of the string correspond to the Table ID,
which is assigned during initial system calibration. The next
three bytes each correspond to the Command Type, the Data,
and the Pin (seat), respectively. An example command for a seat
reservation sent by the Sky Unit and received by the Table Unit
would be as follows: “01 1 2 2,” where:

 01 corresponds to the address of the Table Unit
 1 corresponds to a “Change Seat State” command,
 2 corresponds to a “Reserved” seat status for the

“Change Seat State” command. The meaning of this
byte will change based on the command given.

 2 indicates to alter Seat Two
Putting it all together, this protocol tells Table Unit #01 to

shift Seat Two into the “Reserved” state. Visually, the LED of
Seat Two will start to pulse. Figure A in the Appendix displays
all of the possible values for each byte and their corresponding
meanings.

To test this subsystem in terms of the Sky Unit’s ability to
process and transmit data to and from the server, we used our
protocol to send example data to the database from the
Raspberry Pi. We wrote a Python program using Boto 3 to
connect to the database and access and update table
information, thereby showing reliable and efficient
communication between the Sky Unit and the database. This
functionality will further be tested by automating the process of
sending and receiving data to and from the database while also
having the process occur automatically in response to changes
elsewhere in the system, such as when a seat’s status is changed
on the Table Unit itself. The protocol itself was also tested via
communication between the Table Unit and the Sky Unit,
where data sent using the protocol from the Sky Unit
successfully resulted in the desired change on the Table Unit.

Table Localization: Another important aspect of our system
is determining the position and orientation of each Table Unit
in the dining hall. We need this data for an accurate mapping of

TABLE III
PROTOCOL

Address Command Data Pin
2 Bytes 1 Byte 1 Byte 1 Byte

4

the tables and seats on the mobile app. Without it, our system
can tell the app user that a particular table and seat is open but
not where the table is or which of the four seats are available.
We considered using a static implementation of the Table Unit
locations, with each unit being mapped to a template of the
room prior to operation, but we wanted our system to have
adaptability in case tables were moved, e.g., if patrons pushed
two tables together to seat eight people. We chose this because
it better reflects a practical implementation. Now that we know
what kind of system we want, finding a suitable method is the
next step.

 We first thought about what our system needed to have
reliable, effective, and dynamic table localization. In terms of
accuracy, tables do not need to be identified down to the exact
inch, but rather within at least half of a table’s length. As such,
minimal error is tolerated and tables are reported correctly
enough that users do not fail to find their table. For dynamic
response to changes in the table layout, we decided that periodic
updates every hour are sufficient, since major table movement
is not frequent. The implementation also must be non-intrusive
to the operations of the Table Unit, i.e., not consume too much
power or be distracting to patrons. Keeping these specifications
in mind, we first looked at creating an indoor positioning
system, however, that idea was quickly abandoned. Since the
dining hall is a relatively small area, we must detect differences
between signals on the order of nanoseconds. We also thought
to use ultrasound, as is a common method for indoor
localization, but this technology proves to be too complex and
robust for our needs.

 We consulted Professor Goeckel and Professor Kelly
about different ways to implement table localization
functionality. Professor Goeckel suggested we try to use the
variation in Wi-Fi access point strength to map the room, where
individual locations would have unique but relatively consistent
Wi-Fi strengths based on distance, but warned that this is not
always the case, even over larger distances than would be used
in the dining hall. We did some tests in the Worcester dining
hall by downloading software that measures the Wi-Fi signal
strength at particular locations. Unfortunately, the signal
strength was not consistent, and it did not provide enough
resolution to be able to distinguish between one location and
another location one meter away. Professor Kelly suggested
that we place a unique pattern on the ceiling and equip the Table
Units with small cameras that can take a snapshot of the ceiling.
Depending on what piece of the pattern was shown in the
snapshot, we could determine the location of the Table Unit.
We considered this option but ultimately did not pursue it due
to the extra cost the camera would bring to the Table Units.

 The method that we are implementing uses an IR camera
on the Sky Unit and four IR LEDs on board the Table Unit. The
IR camera will not pick up the visual spectrum, allowing the IR
LEDs to be easily seen when turned on. The position of each
Table Unit will be found using the following steps: First, before
the system is in service, the Sky Unit will be calibrated to the
room. This is done by placing the Sky Unit where it will be
mounted, in a corner of the room, and placing an IR LED at
every other corner. The dimensions of the room will be known.

The IR camera will take a picture of the room and then map the
IR LEDs to the corners of the room. This will create a
rectangular space. This space will then be divided into a grid so
that the table locations can be pinpointed within it. To find the
location of each Table Unit, the Sky Unit will send a command
to a particular Table Unit to turn on all four of its IR LEDs. The
IR camera will take a picture of the dining hall and compare this
with the reference grid, finding the position of the table. The
Table Unit ID and position will then be sent to the database and
finally the mobile app for rendering.

 Additionally, the Table Unit orientation is needed to
determine which button and LED corresponds to which seat,
since the Table Unit is not fixed to the table (for cleaning
purposes). The Sky Unit will determine orientation by sending
a command to a particular Table Unit to turn on one IR LED
corresponding to one of the seats. The IR camera will then take
a picture of the dining hall. From the light intensity, the Sky
Unit will determine the orientation of the unit by using a
reference guide to match light intensity to orientation.

D. Database/Server

Our system will feature a set of databases, each of which will
store table data corresponding to a specific dining hall. These
databases will be populated with information obtained from the
Sky Unit regarding each Table Unit, as explained in the
previous sections, corresponding to table layout and orientation,
and seating occupancy status. Our app will fetch data from the
database corresponding to the user-selected dining hall and use
it to populate the app’s dining hall map and respond to user
searches. To this end, we decided to use Amazon’s DynamoDB.
DynamoDB is fast, flexible, and highly scalable noSQL
database hosted by Amazon Web Services. DynamoDB is fully
integrated with the full suite of AWS services, including
identity management and security. The techniques needed to
produce this part of our project were acquired both in basic
coding classes and through work experience. A test of this part
of our system would likely start with the basic CRUD
functionality and then test the integration of the database with
our greater system. If we can perform CRUD operations
properly and correctly connect the parts of the system together,
then the test will have passed.

Before using DynamoDB, Amazon RDS was also explored
as a potential option, however it proved difficult to interact with
in the way we needed. MySQL is available for simple Pi-
database interaction using RDS, but at the cost of security; in
order to successfully interact with the database, a lot of the
security authentications need to be removed. With DynamoDB,
initially connecting to the database involved a bit more work
but the overall process of interacting is simpler with respect to
the Pi, and more secure in terms of the connection. This led us
to choose DynamoDB for our project.

5

E. Android App

Fig 3. Screenshots of our Android app. The screen on the left allows the user
to select the dining hall and the screen on the right allows the user to view and
search the dining hall map.

Our app is one of the outward-facing parts of our system. The
app will allow the users to browse a seating map of the dining
halls and search the available tables by party size, as shown in
Figure 3. Android Studio IDE and Java were utilized to write
and build the app. A testing suite for this app would test the
user’s ability to select a dining hall, the app’s ability to update
the table map based on database changes, the app’s ability to
communicate with the Pi, and the app’s ability to search the
table data by party size. Proper outcomes from these tests would
confirm proper app functionality.

III. PROJECT MANAGEMENT

As per the table above, our MDR goals focused on
implementing necessary functionality of our system and
integration of its components. Part of this was displayed by a
functional Table Unit with 4 LEDs to indicate the states of the
4 seats monitored by that unit. The states could be changed
physically on the unit via a button press and wirelessly at a
distance via the Sky Unit, which shows integration of Sky and
Table Units and a step towards transmitting data from one end
of the system (phone app) to the other (Table Unit). Integration
of the Sky Unit and the server/app is currently in place with the
app providing a rudimentary user experience of viewing a
rendered, dynamic map of the dining hall tables, entering search
queries, and viewing the response. The app also uses data from
and responds to changes made in the AWS database, which can
be successfully interacted with via the Raspberry Pi on the Sky
Unit. These functionalities satisfy nearly all the deliverables

listed.
 The MDR deliverable that was only partially

delivered upon was the communication between Sky Unit and
Table Unit. In effect, the Table Unit and Sky Unit are
successfully communicating via the two SAMR21G processors
aboard either unit, but the processor aboard the Sky Unit is not
yet successfully connected to the Raspberry Pi. Currently, the
SAMR21G processor on the Sky Unit can successfully transmit
the necessary data when received serially from a computer, but
there is an issue with connecting serially to the Pi that will be
solved. As the Pi functions as a central hub of sorts, having a
successful connection between the Pi and the processor aboard
the Sky Unit results in full connectivity of the system from
Table Unit to the phone app.

 Alongside this issue, table localization is the next
major step to tackle in terms of its successful use,
implementation, and integration with the rest of our system. We
will first test out the IR camera and IR LED interaction, making
sure that the camera can detect the IR LEDs from an appropriate
distance (the farthest distance across the dining hall). After that
is established, we will work on creating a reference grid for a
room, starting out small, and then expanding for the size of the
dining hall. After that, we will then test the finding of the table
positions. As for orientation, we will test that light intensity is
a reliable way to tell orientation and create a reference guide
based on these tests. Then we will implement this in a small
setting, and then expand to the dining hall setting.

There is also still overall optimization and automation to be
done to further enhance the basic functionality that we have into
what is necessary for the system to work as a whole. More
specifically, full Table Unit functionality needs to be
implemented in terms of relevant table localization aspects and
complete code for all possible table states and the behavior of
the LEDs to indicate said states. The code for the Pi aboard the
Sky Unit also needs to be completed such that the processing,
receiving, and sending of data is automated. A line of
communication needs to be opened between the app clients and
the Pi, so that the Pi is the only device making changes in the
database, to prevent reservation conflicts. A more advanced
searching functionality must be implemented for the App, as
well as a handful of UI updates.

 Since our project is easily broken up into components, we
split our team to work on each component relatively
individually. Discussion as a group, however, occurs regarding
each design decision and any changes or issues that come up.
Though everyone has an assigned focus on different aspects of
the project, there is great team involvement to help flesh out the
most efficient approach and to ensure that everyone is
consistently on the same page. We hold weekly meetings with
our advisor, Professor Wolf, where we discuss the project’s
current state, alternatives to current designs and potential issues
that might arise, and next steps. As a team, we also meet one to
two times per week to discuss the project amongst ourselves, to
work on components together, and to ensure proper integration
of our separate components. The team maintains email
communication with Professor Wolf and constant
communication within the team via GroupMe. Project

TABLE IV
MDR DELIVERABLES

Deliverable Percent Complete

Demonstrate basic Table Unit functionality:
 Change of state via button
 Communication to Sky Unit

90

Demonstrate functional app:
 UI – rendered map and ability to

search for seats
 Communication to AWS

100

Demonstrate Sky Unit Communication to AWS 100

6

documentation and organization is maintained on Google
Drive.

 Dennis, our computer systems engineer, handles phone
app development and integration with the AWS server.
Relevant information in terms of functionality and
communication protocol are related to the rest of the team when
necessary so that the rest of the system may effectively
communicate with the database and app when needed. The
Table Unit is being primarily handled by Aarsh, who has great
familiarity with Atmel processors, code, and functionality. Matt
is mainly working with the Raspberry Pi aboard the Sky Unit in
terms of ensuring communication with the database and the
Atmel processor aboard the Sky Unit, and processing of data
that is transmitted throughout the system. Kristina is working
on table localization and how this interfaces with the Sky Unit.
As previously mentioned, each component has substantial input
from the team as a whole to ensure that the best method to
solving the problem and implementing the solution has been
found and agreed upon.

 Figure 4 is our Gantt Chart detailing the start of our
project up to its end.

IV. CONCLUSION

By meeting our MDR deliverables, we have established
almost complete end-to-end integration and communication.
The fundamental skeleton upon which our project resides has
been built and communication protocols have been determined.
Piecewise, our system is integrated. We still have yet to link the
Raspberry Pi to the SAMR21G aboard the Sky Unit and
implement the table localization functionality, the former being
trivial and the latter is in the developmental stage. Our project
has taken a few twists and turns to arrive at this point. We scaled
back our original idea and also sought simpler solutions to the
problems we were trying to tackle. We met frequently and held
each other accountable for the assigned tasks. Through this, we
were able to create the framework for our project and create a
clear idea of what our end goal will be. The next step is to build
upon this framework and optimize power consumption for the
Table Unit. We are aiming for a low power embedded system
and will need to utilize the wake and sleep functionalities to our
advantage. We will be drafting up the PCB schematic in the

coming months so that we can have a running start to next
semester. Since we are unfamiliar with the designing of PCBs,
this part will prove to be a challenge for us, but starting early
on the design will set us up for success. We will start working
on the table localization functionality early on in the semester
as well, since it is a key component in integrating the entire
system. We have a few challenges ahead of us and a lot more
mileage to put in before SDP day, but we are well on our way
to getting there.

APPENDIX

A. Communication Protocol Definitions

Below are the definitions for each byte of our Table unit to
Sky Unit communication protocol, as discussed in Section I.C.

ACKNOWLEDGMENT

We would like to thank our advisor Professor Tilman Wolf
and evaluators Professors Eric Polizzi and Csaba Moritz for
their very useful critiques and insightful advice that helped
guide our project. We would also like to thank Professors
Patrick Kelly and Dennis Goeckel for taking the time to meet
with us and discuss potential options for a part of our project.
Dennis Donoghue would like to thank the creators and users of
the website StackExchange for boundless advice and help.

Fig. 4 Gantt chart outlining the timeline of our project management, starting at the beginning of October and ending in May.

7

REFERENCES

[1] "IP Rating Chart | DSMT.com," DSMT.com, 2018. [Online]. [Accessed
2017].

[2] "ATSAMR21G18A - Wireless - Wireless Modules," Microchip.com,
2018. [Online]. Available:
http://www.microchip.com/wwwproducts/en/ATSAMR21G18A.
[Accessed 2017].

[3] "IEEE 802.15.4-2015 - IEEE Standard for Low-Rate Wireless
Networks," Standards.ieee.org, 2018. [Online]. Available:
https://standards.ieee.org/findstds/standard/802.15.4-2015.html.

[4] "BitCloud SDK," Atmel, 2018. [Online]. Available:
http://www2.ee.ic.ac.uk/t.clarke/projects/Resources/BitCloudBitCloud
SDK for. [Accessed 2017].

[5] "Raspberry Pi 3 Model B," www.rs-components.com, 2018. [Online].
Available: http://docs-
europe.electrocomponents.com/webdocs/14ba/0900766b814ba5fd.pdf.

[6] "Pi NoIR Camera V2 - Raspberry Pi," Raspberry Pi, 2018. [Online].
Available: https://www.raspberrypi.org/products/pi-noir-camera-v2/.
[Accessed 2018].

[7] "boto/boto3 Repository," GitHub, 2018. [Online]. Available:
https://github.com/boto/boto3. [Accessed 2018].

[8] "AWS SDK for Python," Amazon Web Services, Inc., 2018. [Online].
Available: https://aws.amazon.com/sdk-for-python/.

[9] "Amazon DynamoDB Product Details - Amazon Web Services,"
Amazon Web Services, Inc., 2018. [Online]. Available:
https://aws.amazon.com/dynamodb/details/. [Accessed 2017].

[10] "Amazon RDS Product Details - Amazon Web Services (AWS),"
Amazon Web Services, Inc., 2018. [Online]. Available:
https://aws.amazon.com/rds/details. [Accessed 2017].

