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 
Abstract—The EfficienSeat system is proposed as a solution to 

address problems and inefficiencies presented by overcrowded 
dining halls. Through real time monitoring of individual seats via 
sleek, LED based, modular units on every table, users walking 
through the dining hall can easily ascertain seating occupancy at a 
glance and claim their seats with ease. Further, these units will 
ultimately communicate this information to users outside the 
dining hall via a phone application in the form of a real time map, 
giving a simple visual way to determine dining hall occupancy and 
viable seating locations. 

I. INTRODUCTION 

INING halls on our campus suffer from problems in seating 
that limit their overall efficiency. During busy times, 

incoming patrons require info on available seating. Without this 
info people travel up and down walkways searching for a 
potential open seat. Larger parties face more difficulty in 
finding seats. Patrons are then faced with the equally 
unfavorable choices of using their limited time walking 
throughout the entirety of the dining hall an unknown amount 
of times until they find a seat, or leaving and wasting the meal 
swipe or money that they committed to enter the hall. This also 
inhibits staff ability to quickly refill food and dishware 
throughout the dining hall. These time delays, though 
potentially minimal in single instances, add up and are 
detrimental in a food service setting.  
 We sought to design a system that would decrease these 
frustrations and time delays and explored several methods of 
implementation. A big factor was whether to use an active or 
passive system. An active system completely controls where 
patrons sit while a passive system reacts to where patrons 
choose to sit. A completely active system would be akin to a 
restaurant reservation system. This system would be good for 
maximum seating efficiency but is not suitable for a dining hall 
environment. Patrons would be averse to the idea of being told 
where to sit, especially when the dining hall is relatively empty. 
The sheer number of seats to manage in a dining hall also makes 
this approach inefficient. 

On the opposite end of the spectrum we contemplated an 
entirely passive system, one that indicates seat status based on 
the seats at which people choose to sit. This system senses when 
someone is sitting at a particular seat and then relays this 
information to patrons inside and outside the dining hall. This 
system is favorable because patrons will not have to do 
anything new, however, it would be expensive and complex to 
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implement. Our solution was a hybrid of the two approaches. 
With the hybrid system in mind, we then considered the 

specific needs of our solution. The solution must improve time 
and travel efficiency for patrons and staff. To do this, it must 
accurately identify seating status and indicate this to incoming 
patrons. It must also be simple to service without interrupting 
the normal operation of the dining hall e.g. easy to install and 
requiring infrequent maintenance. The only maintenance that 
should be required would be battery replacement once a month 
for individual monitoring units. The system should be IPX4 [1]   
compliant to comply with food safety standards and to ensure 
reliable operation.  
 To satisfy these needs, the system will consist of nodes 
situated on every table in the dining hall, all reporting to a 
central hub. The nodes need to be small and self-sufficient in 
terms of power; this coincides with the low maintenance 
requirement, where routine “refilling” of power should be 
monthly. Every node will be connected to a central hub, 
creating a network that will reliably monitor the seating 
situation and ultimately report this to the user via a phone 
application. Table 1 quantifies these requirements. 
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TABLE I 
REQUIREMENTS AND SPECIFICATIONS 

Requirement Specification 

Table search functionality 
 
 

Users can search for available seats 
by party size through a mobile app 

App users will receive timely 
graphical response 
 

Updated map displayed within 2 
seconds 

App users can find their 
tables from the map on the 
mobile app  
 

Table locations will be accurate to ½ 
a table length 
 

System can manage entire 
dining hall 
 

Can support > 100 seats 

Table unit is splash-proof and 
safe for use in a dining hall 
 

Table unit is compliant with IPX4 

System can accommodate 
non-app users  

Patrons can claim seats by pressing a 
button on the Table Unit 
 

Infrequent maintenance Monthly battery replacement 
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II. DESIGN 

A. Overview 

 
Fig 1. Block diagram of our system. There are four main blocks that make up 
our system: the Table Unit, Sky Unit, Database Server, and Android App. 

To solve this problem, we will design a network within a 
dining hall that will have real time monitoring of seat 
occupancy and consistent reporting of this data to users. The 
data is accessible to users both inside and outside of the dining 
hall.  As shown in the block diagram in Figure 1, this network 
will consist of four subsystems: 1) the aforementioned nodes - 
dubbed ‘Table Units,’ 2) a ‘Sky Unit,’ 3) a database, and 4) a 
phone application. The purpose of each subsystem and the 
interaction between them is outlined in the overview, with more 
detailed descriptions provided in the following sections.  

Patrons of the dining hall, the users of our system, will 
interact with it from two points: the phone application and the 
Table Units. Table Units will populate the dining hall as 
compact units, one per table of four seats. These units provide 
the first point of user interaction within the dining hall: users 
claim seats by pressing a button, and the LEDs on the unit 
indicate seat status, providing a simple method of identifying 
occupancy at a glance. By having an easy-to-interpret system to 
claim seats, the issue of patrons marking their spots with 
valuable items like phones or keys is eliminated and seat status 
will be clearly marked via the LEDs, eliminating the ambiguity 
of a stray coat or left behind dishware. 

Seat status is reported from each Table Unit to the Sky Unit, 
the central hub of the network. As the hub, it processes the 
Table Unit data and functions as the medium of communication 
between the Table Units and the database/app side of the 
system. Alongside this, the Sky Unit will also perform table 
localization; this information is used to accurately report seat 
status to users via the app. 

From the Sky Unit, seat status’ will be sent to the database. 
The database will be constantly updated in real-time by both the 
Sky Unit and the phone app so that it will contain up-to-date 
information of all seats within the dining hall. 

The phone application provides the other point of user 
interaction with our system from outside of the dining hall. 
Namely, users can view a map of the dining hall with table 
occupancy, search for available seats by party size, and reserve 
seats, all from the convenience of their phone. The map of the 

dining hall is generated using information queried from the 
database for table occupancy and the localization data for the 
position of each table within the dining hall.  

With a basic outline of the system’s functionality and 
interactions established, the following sections delve into each 
subsystem more, discussing design choices and alternatives, 
protocols, and component interactions. 

B. Table Unit 

  
Fig 2. Conceptual drawing of the Table Unit design. The unit will be no more 
than 10cm by 10cm and features a pushbutton for seat confirmation and 
reservation, a visible LED for seat status, and an IR LED for table 
localization. 

The Table Unit is a small modular unit for user interaction at 
the table itself containing a visual LED and button pair for each 
of the table’s four seats (See Figure 2). It also contains four IR 
LEDs, which will be discussed later regarding table 
localization. The visual LEDs are used to indicate the status of 
the seats to the user, namely whether the seat is taken or not. 
The buttons are used to confirm seat reservations made from the 
app and to occupy and vacate seats without the app. The final 
product will be splash-proof (IPX4 compliance mentioned in 
the introduction) and easy to maintain with low power 
consumption. The following table shows the seat state 

corresponding to the LED responses:  
The following bullets guided us on selecting the processor to 

be used on the Table Unit: 
 The processor needs to support a wireless network 

with low bandwidth and energy. 
 The processor shall be able to handle at least 

hundred nodes on a network. 
 It should be low powered to keep the maintenance 

of the unit to a minimum. 
 Needs to also take input from four buttons and 

output to eight LEDs. 
The SAMR21 microcontroller [2] by Microchip Technology 
Inc. seemed to be the right choice. The microcontroller has a 
System on Chip to connect the Table Unit to a network based 

TABLE II 
TABLE UNIT CHAIR STATES 

Chair State LED Response 

Vacant OFF 
Occupied ON 

Reserved Slow Pulse 
About to Expire Slow Pulse 
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on IEEE 802.15.4 communication protocol [3]. This is a low 
bandwidth network protocol due to reduced power 
requirements to run the network. The stack provided by 
Microchip – Bitcloud [4] – is well supported for this 
microcontroller. Some of its features are: 

 Network management of more than sixty-five 
thousand nodes. 

 Queuing of incoming packets. 
 Callbacks to confirm data received. 

The project started with a few example codes in Atmel Studio 
Framework to better understand the overall code that would 
govern operation of the Table Unit. Simple network 
communication was established between two SAMR21 boards 
via their built-in RF antennas. The range of communication was 
established to be beyond 50 feet through testing with a wall 
barrier, this range is more than enough to communicate to any 
corner of a dining common from its center. Further testing was 
done including button debouncing optimization to give a 
smoother interface for the user. The Table Unit will be tested 
using a default set of commands including the following 
responses: 

 Button press shall toggle states between vacant and 
occupied. 

 Message received from Sky Unit shall be processed 
and signified on LEDs. 

 Reserved state shall go to occupied when button is 
pressed. 

 Timer state shall give a pulse on the corresponding 
LED. 

 Data shall be sent when a button is pressed at the 
Table Unit which should be properly received at the 
coordinator in Sky Unit. 

C. Sky Unit 

The Sky Unit is composed of the Atmel SAMR21G 
processor and Raspberry Pi 3 board [5]. For table localization, 
a Raspberry Pi NoIR camera module [6] is used. These three 
components will all operate from wall power. The Sky Unit 
functions as a central hub for all the Table Units, and as an 
intermediate link between the Table Units and the database/app. 
The SAMR21G board is used to communicate wirelessly with 
the Table Units via the Atmel Bitcloud stack, as explained in 
the Table Unit section. The Raspberry Pi was chosen as the 
central processing system for the Sky Unit due to its power and 
versatility as a computer coupled with easy-to-use functionality 
and an abundance of available documentation. For our database 
needs, we ultimately decided upon Amazon Web Services 
(AWS) - which is discussed in more detail in Section II.D - and 
this influenced the functionality of our Pi. Python code using 
Boto 3, Amazon’s own SDK for Python [7], [8],  is used on the 
Pi to communicate data between the Table Units and the 
database. Given the plentiful documentation for Boto 3 from 
AWS, as well as the convenient use of Python scripts aboard 
the Pi, this communication method proved to be the most 
efficient way of both writing to and reading from the database 
with the Pi. By utilizing the Atmel Bitcloud stack and the Boto 
3 SDK, we have successful communication between the Table 

Units and the database. 
Alternatives for interfacing the Pi with the database were 

explored as per the database chosen; Boto 3 was our final choice 
as we settled on Amazon DynamoDB [9] with which Boto 3 is 
closely coupled, but a previous option was Amazon RDS [10] - 
the choice to switch databases is discussed in detail in the 
following section.  

To communicate seating data efficiently throughout the 
system, we needed to design a protocol for the information 
being sent. To do this, we identified the pertinent 
information required for successful system operation, which 
boiled down to Table ID (with what Table Unit are we 
communicating?), Command Type (are we changing seat 
occupancy? telling the Table Unit to sleep?), and Data (seat is 
now occupied, Table Unit action). Our resultant protocol 
consists of a five-byte string, as displayed in the table below 
(Table III). 

The first two bytes of the string correspond to the Table ID, 
which is assigned during initial system calibration. The next 
three bytes each correspond to the Command Type, the Data, 
and the Pin (seat), respectively. An example command for a seat 
reservation sent by the Sky Unit and received by the Table Unit 
would be as follows: “01 1 2 2,” where: 

 01 corresponds to the address of the Table Unit 
 1 corresponds to a “Change Seat State” command,  
 2 corresponds to a “Reserved” seat status for the 

“Change Seat State” command. The meaning of this 
byte will change based on the command given. 

 2 indicates to alter Seat Two 
Putting it all together, this protocol tells Table Unit #01 to 

shift Seat Two into the “Reserved” state. Visually, the LED of 
Seat Two will start to pulse. Figure A in the Appendix displays 
all of the possible values for each byte and their corresponding 
meanings.  

To test this subsystem in terms of the Sky Unit’s ability to 
process and transmit data to and from the server, we used our 
protocol to send example data to the database from the 
Raspberry Pi. We wrote a Python program using Boto 3 to 
connect to the database and access and update table 
information, thereby showing reliable and efficient 
communication between the Sky Unit and the database. This 
functionality will further be tested by automating the process of 
sending and receiving data to and from the database while also 
having the process occur automatically in response to changes 
elsewhere in the system, such as when a seat’s status is changed 
on the Table Unit itself. The protocol itself was also tested via 
communication between the Table Unit and the Sky Unit, 
where data sent using the protocol from the Sky Unit 
successfully resulted in the desired change on the Table Unit. 

Table Localization: Another important aspect of our system 
is determining the position and orientation of each Table Unit 
in the dining hall. We need this data for an accurate mapping of 

TABLE III 
PROTOCOL 

Address Command Data Pin 
2 Bytes 1 Byte 1 Byte 1 Byte 
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the tables and seats on the mobile app. Without it, our system 
can tell the app user that a particular table and seat is open but 
not where the table is or which of the four seats are available. 
We considered using a static implementation of the Table Unit 
locations, with each unit being mapped to a template of the 
room prior to operation, but we wanted our system to have 
adaptability in case tables were moved, e.g., if patrons pushed 
two tables together to seat eight people. We chose this because 
it better reflects a practical implementation. Now that we know 
what kind of system we want, finding a suitable method is the 
next step. 

 We first thought about what our system needed to have 
reliable, effective, and dynamic table localization. In terms of 
accuracy, tables do not need to be identified down to the exact 
inch, but rather within at least half of a table’s length. As such, 
minimal error is tolerated and tables are reported correctly 
enough that users do not fail to find their table. For dynamic 
response to changes in the table layout, we decided that periodic 
updates every hour are sufficient, since major table movement 
is not frequent. The implementation also must be non-intrusive 
to the operations of the Table Unit, i.e., not consume too much 
power or be distracting to patrons. Keeping these specifications 
in mind, we first looked at creating an indoor positioning 
system, however, that idea was quickly abandoned. Since the 
dining hall is a relatively small area, we must detect differences 
between signals on the order of nanoseconds. We also thought 
to use ultrasound, as is a common method for indoor 
localization, but this technology proves to be too complex and 
robust for our needs.  

 We consulted Professor Goeckel and Professor Kelly 
about different ways to implement table localization 
functionality. Professor Goeckel suggested we try to use the 
variation in Wi-Fi access point strength to map the room, where 
individual locations would have unique but relatively consistent 
Wi-Fi strengths based on distance, but warned that this is not 
always the case, even over larger distances than would be used 
in the dining hall. We did some tests in the Worcester dining 
hall by downloading software that measures the Wi-Fi signal 
strength at particular locations. Unfortunately, the signal 
strength was not consistent, and it did not provide enough 
resolution to be able to distinguish between one location and 
another location one meter away. Professor Kelly suggested 
that we place a unique pattern on the ceiling and equip the Table 
Units with small cameras that can take a snapshot of the ceiling. 
Depending on what piece of the pattern was shown in the 
snapshot, we could determine the location of the Table Unit. 
We considered this option but ultimately did not pursue it due 
to the extra cost the camera would bring to the Table Units.  

 The method that we are implementing uses an IR camera 
on the Sky Unit and four IR LEDs on board the Table Unit. The 
IR camera will not pick up the visual spectrum, allowing the IR 
LEDs to be easily seen when turned on. The position of each 
Table Unit will be found using the following steps: First, before 
the system is in service, the Sky Unit will be calibrated to the 
room. This is done by placing the Sky Unit where it will be 
mounted, in a corner of the room, and placing an IR LED at 
every other corner. The dimensions of the room will be known. 

The IR camera will take a picture of the room and then map the 
IR LEDs to the corners of the room. This will create a 
rectangular space. This space will then be divided into a grid so 
that the table locations can be pinpointed within it. To find the 
location of each Table Unit, the Sky Unit will send a command 
to a particular Table Unit to turn on all four of its IR LEDs. The 
IR camera will take a picture of the dining hall and compare this 
with the reference grid, finding the position of the table. The 
Table Unit ID and position will then be sent to the database and 
finally the mobile app for rendering. 

 Additionally, the Table Unit orientation is needed to 
determine which button and LED corresponds to which seat, 
since the Table Unit is not fixed to the table (for cleaning 
purposes). The Sky Unit will determine orientation by sending 
a command to a particular Table Unit to turn on one IR LED 
corresponding to one of the seats. The IR camera will then take 
a picture of the dining hall. From the light intensity, the Sky 
Unit will determine the orientation of the unit by using a 
reference guide to match light intensity to orientation. 

D. Database/Server 

Our system will feature a set of databases, each of which will 
store table data corresponding to a specific dining hall. These 
databases will be populated with information obtained from the 
Sky Unit regarding each Table Unit, as explained in the 
previous sections, corresponding to table layout and orientation, 
and seating occupancy status. Our app will fetch data from the 
database corresponding to the user-selected dining hall and use 
it to populate the app’s dining hall map and respond to user 
searches. To this end, we decided to use Amazon’s DynamoDB. 
DynamoDB is fast, flexible, and highly scalable noSQL 
database hosted by Amazon Web Services. DynamoDB is fully 
integrated with the full suite of AWS services, including 
identity management and security. The techniques needed to 
produce this part of our project were acquired both in basic 
coding classes and through work experience. A test of this part 
of our system would likely start with the basic CRUD 
functionality and then test the integration of the database with 
our greater system. If we can perform CRUD operations 
properly and correctly connect the parts of the system together, 
then the test will have passed.  

Before using DynamoDB, Amazon RDS was also explored 
as a potential option, however it proved difficult to interact with 
in the way we needed. MySQL is available for simple Pi-
database interaction using RDS, but at the cost of security; in 
order to successfully interact with the database, a lot of the 
security authentications need to be removed. With DynamoDB, 
initially connecting to the database involved a bit more work 
but the overall process of interacting is simpler with respect to 
the Pi, and more secure in terms of the connection. This led us 
to choose DynamoDB for our project. 
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E. Android App 

 
Fig 3. Screenshots of our Android app. The screen on the left allows the user 
to select the dining hall and the screen on the right allows the user to view and 
search the dining hall map. 

Our app is one of the outward-facing parts of our system. The 
app will allow the users to browse a seating map of the dining 
halls and search the available tables by party size, as shown in 
Figure 3. Android Studio IDE and Java were utilized to write 
and build the app. A testing suite for this app would test the 
user’s ability to select a dining hall, the app’s ability to update 
the table map based on database changes, the app’s ability to 
communicate with the Pi, and the app’s ability to search the 
table data by party size. Proper outcomes from these tests would 
confirm proper app functionality. 

III. PROJECT MANAGEMENT 

As per the table above, our MDR goals focused on 
implementing necessary functionality of our system and 
integration of its components. Part of this was displayed by a 
functional Table Unit with 4 LEDs to indicate the states of the 
4 seats monitored by that unit. The states could be changed 
physically on the unit via a button press and wirelessly at a 
distance via the Sky Unit, which shows integration of Sky and 
Table Units and a step towards transmitting data from one end 
of the system (phone app) to the other (Table Unit). Integration 
of the Sky Unit and the server/app is currently in place with the 
app providing a rudimentary user experience of viewing a 
rendered, dynamic map of the dining hall tables, entering search 
queries, and viewing the response. The app also uses data from 
and responds to changes made in the AWS database, which can 
be successfully interacted with via the Raspberry Pi on the Sky 
Unit. These functionalities satisfy nearly all the deliverables 

listed. 
   The MDR deliverable that was only partially 

delivered upon was the communication between Sky Unit and 
Table Unit. In effect, the Table Unit and Sky Unit are 
successfully communicating via the two SAMR21G processors 
aboard either unit, but the processor aboard the Sky Unit is not 
yet successfully connected to the Raspberry Pi. Currently, the 
SAMR21G processor on the Sky Unit can successfully transmit 
the necessary data when received serially from a computer, but 
there is an issue with connecting serially to the Pi that will be 
solved. As the Pi functions as a central hub of sorts, having a 
successful connection between the Pi and the processor aboard 
the Sky Unit results in full connectivity of the system from 
Table Unit to the phone app.  

   Alongside this issue, table localization is the next 
major step to tackle in terms of its successful use, 
implementation, and integration with the rest of our system. We 
will first test out the IR camera and IR LED interaction, making 
sure that the camera can detect the IR LEDs from an appropriate 
distance (the farthest distance across the dining hall). After that 
is established, we will work on creating a reference grid for a 
room, starting out small, and then expanding for the size of the 
dining hall. After that, we will then test the finding of the table 
positions. As for orientation, we will test that light intensity is 
a reliable way to tell orientation and create a reference guide 
based on these tests. Then we will implement this in a small 
setting, and then expand to the dining hall setting. 

There is also still overall optimization and automation to be 
done to further enhance the basic functionality that we have into 
what is necessary for the system to work as a whole. More 
specifically, full Table Unit functionality needs to be 
implemented in terms of relevant table localization aspects and 
complete code for all possible table states and the behavior of 
the LEDs to indicate said states. The code for the Pi aboard the 
Sky Unit also needs to be completed such that the processing, 
receiving, and sending of data is automated. A line of 
communication needs to be opened between the app clients and 
the Pi, so that the Pi is the only device making changes in the 
database, to prevent reservation conflicts. A more advanced 
searching functionality must be implemented for the App, as 
well as a handful of UI updates.  

 Since our project is easily broken up into components, we 
split our team to work on each component relatively 
individually. Discussion as a group, however, occurs regarding 
each design decision and any changes or issues that come up. 
Though everyone has an assigned focus on different aspects of 
the project, there is great team involvement to help flesh out the 
most efficient approach and to ensure that everyone is 
consistently on the same page. We hold weekly meetings with 
our advisor, Professor Wolf, where we discuss the project’s 
current state, alternatives to current designs and potential issues 
that might arise, and next steps. As a team, we also meet one to 
two times per week to discuss the project amongst ourselves, to 
work on components together, and to ensure proper integration 
of our separate components. The team maintains email 
communication with Professor Wolf and constant 
communication within the team via GroupMe. Project 

TABLE IV 
MDR DELIVERABLES 

Deliverable Percent Complete 

Demonstrate basic Table Unit functionality: 
 Change of state via button 
 Communication to Sky Unit 

90 

Demonstrate functional app: 
 UI – rendered map and ability to 

search for seats 
 Communication to AWS 

100 

Demonstrate Sky Unit Communication to AWS 100 
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documentation and organization is maintained on Google 
Drive. 

  Dennis, our computer systems engineer, handles phone 
app development and integration with the AWS server. 
Relevant information in terms of functionality and 
communication protocol are related to the rest of the team when 
necessary so that the rest of the system may effectively 
communicate with the database and app when needed. The 
Table Unit is being primarily handled by Aarsh, who has great 
familiarity with Atmel processors, code, and functionality. Matt 
is mainly working with the Raspberry Pi aboard the Sky Unit in 
terms of ensuring communication with the database and the 
Atmel processor aboard the Sky Unit, and processing of data 
that is transmitted throughout the system. Kristina is working 
on table localization and how this interfaces with the Sky Unit. 
As previously mentioned, each component has substantial input 
from the team as a whole to ensure that the best method to 
solving the problem and implementing the solution has been 
found and agreed upon.  

  Figure 4 is our Gantt Chart detailing the start of our 
project up to its end. 

IV. CONCLUSION 

By meeting our MDR deliverables, we have established 
almost complete end-to-end integration and communication. 
The fundamental skeleton upon which our project resides has 
been built and communication protocols have been determined. 
Piecewise, our system is integrated. We still have yet to link the 
Raspberry Pi to the SAMR21G aboard the Sky Unit and 
implement the table localization functionality, the former being 
trivial and the latter is in the developmental stage. Our project 
has taken a few twists and turns to arrive at this point. We scaled 
back our original idea and also sought simpler solutions to the 
problems we were trying to tackle. We met frequently and held 
each other accountable for the assigned tasks. Through this, we 
were able to create the framework for our project and create a 
clear idea of what our end goal will be. The next step is to build 
upon this framework and optimize power consumption for the 
Table Unit. We are aiming for a low power embedded system 
and will need to utilize the wake and sleep functionalities to our 
advantage. We will be drafting up the PCB schematic in the 

coming months so that we can have a running start to next 
semester. Since we are unfamiliar with the designing of PCBs, 
this part will prove to be a challenge for us, but starting early 
on the design will set us up for success. We will start working 
on the table localization functionality early on in the semester 
as well, since it is a key component in integrating the entire 
system. We have a few challenges ahead of us and a lot more 
mileage to put in before SDP day, but we are well on our way 
to getting there. 

APPENDIX 

A. Communication Protocol Definitions 

Below are the definitions for each byte of our Table unit to 
Sky Unit communication protocol, as discussed in Section I.C. 
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Fig. 4 Gantt chart outlining the timeline of our project management, starting at the beginning of October and ending in May. 
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