
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— The EfficienSeat system is proposed as a solution to

address problems and inefficiencies presented by overcrowded

dining halls. Through real time monitoring of individual seats via

sleek, LED based, modular units on every table, users walking

through the dining hall can easily ascertain seating occupancy at a

glance and claim their seats with ease. Further, these units will

ultimately communicate this information to users outside the

dining hall via a phone application in the form of a real time map,

giving a simple visual way to determine dining hall occupancy and

viable seating locations.

I. INTRODUCTION

ining halls on our campus suffer from problems in

seating that limit their overall efficiency. During

especially busy times, incoming patrons have no way of

knowing if there will be seats available for them as they commit

to entering a dining hall. This leads to masses of people

traveling up and down walkways searching for a potential open

seat within a sea of people. The more people to a party, the more

challenging and frustrating it gets to find seating. Patrons are

then faced with the equally unfavorable choices of using their

limited time walking throughout the entirety of the dining hall

an unknown amount of times until they find a seat, or leaving

and wasting the meal swipe or money that they committed to

enter the hall. Not only does this waste the patron’s time, but

also that of the dining hall workers, who are trying to use these

same walkways to keep the dining hall operating smoothly by

refilling food or dishware, for example. These time delays,

though potentially minimal in single instances, add up and are

extremely detrimental in a food service setting.
 We sought to design a system that would decrease these

frustration and time delays, and explored several methods of

implementation. One of the big factors we had to decide on was

whether to opt for an active or passive system. An active system

being one that completely controls where patrons will sit and a

passive system that reacts to where patrons choose to sit. A

completely active system would be one akin to the restaurant

reservation system, one where patrons are told where to sit. This

system would be good for maximum seating efficiency, but is

not suitable for a dining hall environment. Patrons would be

averse to the idea of being told where to sit, especially when the

dining hall is relatively empty. Also, the sheer number of seats

to manage in a dining hall also makes this approach inefficient.
 On the opposite end of the spectrum, we contemplated doing

an entirely passive system, one that would indicate seat status

D. Donoghue from Dover, Ma (e-mail: ddonoghue@umass.edu).

M. Donnelly from Springfield, Ma (e-mail: matthewdonne@umass.edu).

based on the seats people chose to sit at. This system would

sense when someone was sitting at a particular seat and then

relay this information to patrons inside and outside the dining

hall. This is favorable because patrons will not have to do

anything new in this system, but it would be expensive and

complex to implement. For the solution that we came up with,

we went with a hybrid between these two approaches.
 With the hybrid system in mind, we then considered the

specific needs of our solution. The solution needs to

satisfactorily address both patrons and dining hall staff in

regards to efficiency and time delay, and one that does so via

an implementation that is easy to maintain and non-invasive to

the normal operation of the dining hall. More specifically, the

system needs to be able to accurately indicate the seating status

within the dining hall to incoming patrons, allowing them to see

seat availability and identify where they are able to and would

like to sit. To be effective, the system needs to be able to

monitor several hundred seats, as would be present within the

dining hall area. At the same time, the system must not be

invasive; neither patrons nor the staff should have to work

around the system, or be interrupted by it during normal

operation. More specific to the dining hall staff the system must

also be easy to maintain, requiring easy installation and

infrequent maintenance. Ideally, the only maintenance that

should be required would be battery replacement once a month

for individual monitoring units. Given that this system is to

operate in an environment around food, there are also standards

to consider regarding both food safety and the safety of the

device. In regards to safety of the device, it should be IPX4

compliant, which indicates that it can withstand splashing and

spills.
 To satisfy these needs, the system will be composed of

a number of nodes situated about the dining hall on the tables

to directly monitor the seats. These nodes will need to be

minimal in size and self-sufficient in terms of power; this

coincides with the low maintenance requirement, where routine

“refilling” of power should be reasonably infrequent, to the tune

of monthly changes. Every node will be connected to a central

K Georgadarellis from Dartmouth, Ma (e-mail: kgeorgadarel@umass.edu).

A. Jain from New Delhi, India (e-mail: aarshjain@umass.edu).

EfficienSeat

Dennis Donoghue, CSE, Matthew Donnelly, EE, Kristina Georgadarellis, EE, and Aarsh Jain, EE

D

Desig

n

TABLE I
SPECIFICATIONS

Specification Value

Amount seat supported >=100 seats
Phone App Response Time <2 seconds

Table Unit Area <16in2

IPX4 Compliant
Battery Life ~1 month

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

hub, creating a network that will reliably monitor the seating

situation and ultimately report this to the user via a phone

application. Table 1 quantifies these specifications.

A. Overview

Fig 1. Block diagram of our system. There are four main blocks that make up

our system: the Table Unit, Sky Unit, Database Server, and Android App.

To solve this problem, we will design a network to be

installed within a dining hall that will allow for real time

monitoring of seat occupancy and consistent reporting of this

data to users, both inside and outside of the dining hall. As

shown in the block diagram in Figure 1, this network will

consist of 4 major components: 1) the aforementioned nodes -

dubbed “Table Units,” 2) a “Sky Unit,” 3) a database, and 4) a

phone application. Each block’s purpose will be outlined in this

design section, with more detailed descriptions being provided

in the following sections respective to each block.
Patrons of the dining hall, who will be the users of this

system, will interact with it from two points: the phone

application and the table units. Table units will populate the

dining hall as compact units each containing 4 buttons and a

number of multi-purpose LEDs, with each unit monitoring 4

seats. Single tables will only require 1 table unit while longer

ones will utilize multiple units. These units provide the first

point of user interaction by allowing users to claim seats by

pressing a button, and seat status will be indicated via the LEDs,

providing a simple method of identifying occupancy at a glance

for users within the dining hall. By having an easy to interpret

system to claim seats the issue of patrons marking their spots

with valuable items like phones or keys is eliminated and

individual seats will be clearly marked as per their associated

LED, instead of an ambiguously placed coat, bag, or phone on

the table. Seat occupancy information will be reported from

each table unit to the Sky Unit, which will be the central hub of

the network. As the central hub, it will process the table unit

data and function as the medium of communication between the

table units and the database/app side of the system. Alongside

this, the Sky Unit will also perform table localization, the

information of which will be used to accurately report seating

data to users via the app.
From the Sky Unit, seating information will be sent to

the database, for which we have chosen to use Amazon

DynamoDB. The database will be constantly updated in real

time by both the Sky Unit and the phone app so that it will

contain up to date information of all seats within the dining hall.
The phone application provides the other end of user

interaction with our system. Namely, users will be able to not

only observe the seating situation within the dining hall from

their phone, but also search for available seats as per the number

of people within their party and reserve these seats from the app.

Using information queried from the database and the

aforementioned table localization data the app will generate a

map of the dining hall that indicates the occupancy of seats for

the user. Communication will be maintained throughout the

entire network so that, for instance, a seat reservation indicated

from the phone app will be received by the table unit relatively

instantaneously. With a basic outline of the functionality of the

system, each block will now be discussed in greater detail in

terms of protocol, components, and the like. Although many

alternative designs were considered, these were more specific

to the technologies used within each block; the overall topology

of the system has remained largely the same its inception. These

alternatives will be discussed in detail in the following sections.

B. Table Unit

The table unit is the interactive device for the users at the

table itself and is a small modular unit containing 4 visual LEDs

and 4 buttons, corresponding to 4 seats that the unit is

monitoring. It will also contain 4 IR LEDs, which will be

discussed later in regards to table localization. The visual LEDs

will be used to indicate the status of the seats to the user, namely

whether they are taken or not. The buttons will be used to

confirm reservations of seats made from the app, and to

occupy/vacate seats without the app. The final product will be

splash-proof (IPX4 compliance mentioned in the introduction)

and easy to maintain with low power consumption. The

following table shows the seat state corresponding to the LED

responses:

 The above explanation gives us the requirements for the

processor selection.
• The processor needed to be able to communicate

through a network with the ability to handle multiple

request at any time.

• It should be low powered to keep the maintenance of

the unit to minimal.

• It should be able to take input from four buttons and

output to four leds.

 SAMR21 by Microchip Technology inc. seemed to be

the right choice. The microcontroller (SAMR21) has a System

on Chip for IEEE 802.15.4 communication protocol. This is a

low powered and low bandwidth network protocol generally

TABLE II

TABLE UNIT CHAIR STATES

Chair State LED Response

Vacant OFF

Occupied ON

Reserved Slow Pulse
About to Expire Slow Pulse

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

used to communicate to low powered remote devices. The stack

provided by Microchip, Bitcloud, is well supported for this

microcontroller. Some of its features are:
• Network management of more than sixty-five

thousand nodes.

• Automatic queuing of incoming packets.

• Confirmation packet for received data.

 The project started with a few example codes in Atmel

Studio Framework to better understand the overall code that

would govern operation of the Table Unit. Simple network

communication was established between two SAMR21 boards

via their built in RF antennas. The range of communication was

established to be beyond 50 feet through testing with a wall

barrier which is more than enough to communicate to any

corner of a dining common from its center. Further testing was

done including button debouncing optimization to give a

smoother interface for the user. The Table Unit will be tested

using a default set of commands including the following

responses:
• Button press toggles state vacant and occupied.

• Message received from Sky Unit shall be processed

and signified on leds.

• Reserved state shall go to occupied when button is

pressed.

• Timer state shall give a pulse on the corresponding

LED.

• Data shall be sent when a button is pressed at the Table

Unit which should be properly received at the

coordinator in Sky Unit.

C. Sky Unit

 The Sky Unit will be composed of the same Atmel

SAMR21G processor used in the Table Unit as well as a

Raspberry Pi 3 board. For table localization, a Raspberry Pi

NoIR camera module will be used. These three components will

all operate from wall power. The Sky Unit functions as a central

hub for all of the Table Units, and an intermediate link between

the Table Units and the database/app. The SAMR21G board

will be used to communicate wirelessly with the Table Units via

the Atmel Bitcloud stack, as explained in the Table Unit

section. While the Sky Unit is the central hub of the system

from a block diagram point of view, the Raspberry Pi is the true

center; the Pi was chosen for its power and versatility as a

computer coupled with easy to use functionality and an

abundance of documentation available online. For

communicating data between the Table Units and the database

the Pi will receive and process data via code written in Python

using Boto 3, which is Amazon’s own SDK for Python. As we

chose to utilize Amazon Web Services (AWS) for our database

server, which will be addressed in more detail in the following

section, Boto 3 was a reliable choice for integration as it is very

well documented by AWS and provides a method of easy to

use, low level access to the database from the Pi. Given that

Python code is easily written and used on the Raspberry Pi, this

is the perfect option that provides a simple, reliable, and

efficient way of both writing to and reading from the database

with the Pi. By utilizing the Atmel Bitcloud stack and the Boto

3 SDK, we effectively have successful communication between

the Table Units and the database.
 In terms of interfacing the Pi with the database, alternatives

were explored as per the database chosen; Boto 3 was our final

choice as we settled on Amazon DynamoDB, with which Boto

3 is closely coupled, but a previous option was that of Amazon

RDS - the choice to switch databases will be discussed in the

following section. In terms of interfacing the Pi with RDS,

simple interaction was available through the use of MySQL at

the cost of security due to the nature of the connection. In order

to successfully interact with the database, a lot of the security

authentications needed to be removed. With DynamoDB,

initially connecting to the database involves a bit more work,

but the overall process of interacting is simpler with respect to

the Pi, and more secure in terms of the connection.
In order to communicate seating data efficiently throughout

the system, we needed to design a protocol for the information.

To do this, we identified the pertinent information that would

be present and required for successful data transmission in

terms of accurately monitoring and altering seating states and

maintaining system status, which boiled down to Table ID (with

what Table Unit are we communicating?), command type (are

we changing seat occupancy? telling the Table Unit to sleep?),

and data (seat is now occupied, Table Unit action). Our resultant

protocol consists of 5-byte strings, as displayed in the table

below (Table III).

TABLE III
PROTOCOL

ADDRESS COMMAND DATA PIN

2 Bytes 1 Byte 1 Byte 1 Byte

The first 2 bytes of the string correspond to the Table Unit

address, which will be acquired during calibration. The next 3

bytes each correspond to the command type, the data, and the

pin (seat), respectively. An example command for a seat

reservation would be as follows: “01 1 2 2,” where 01

correspond to the address of the Table Unit, and 1 corresponds

to a “change seat state” command. Given that the seat state is

changing, the fourth byte will correspond to vacant, occupied,

or reserved (2 for reserved in this case). Finally, we need to

know which seat of the four corresponding to this Table Unit

are being affected - here we are changing Seat 2 to reserved.

Figure 1A in the Appendix displays all of the possible values

for each byte and their corresponding meanings.
 To test this block in terms of the Sky Unit’s ability to process

and transmit data to and from the server, we communicated

example data as per the previously described protocol to alter

data within the database. By writing a Python program utilizing

Boto 3 to establish a connection with the database and both

request and modify specific table information within the

database, we could exercise a reliable method of wirelessly

interacting with the database from the Sky Unit, and more

specifically the Pi on the Sky Unit. This functionality will

further be tested by automating the process of sending and

receiving data to and from the database and having it occur

automatically in response to changes elsewhere in the system,

such as when a seat’s state is changed on the Table Unit itself.

The protocol itself was also tested via communication between

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

the Table Unit and the Sky Unit, where data sent in this protocol

from the Sky Unit successfully resulted in the desired change

on the Table Unit.
 Table Localization: Another important aspect of our system

is determining the position and orientation of each Table Unit

in the dining hall. This data is needed for an accurate mapping

of the tables and seats on the mobile app. Without it, our system

could tell the app user that a particular table and seat is open but

not where the table is or which of the four seats are available.

We could have opted for a static implementation of the Table

Unit locations with each unit being mapped to a template of the

room before the system was in service, but we wanted our

system to have adaptability in table positions in case tables were

moved, like if patrons pushed two tables together to seat eight

people, for example. We felt as if this was more reflective of a

practical implementation of our system. Now let’s talk about

the methods we considered to implement the table localization

functionality.
 We first thought about what our system needed in order to

have reliable, effective, and dynamic table localization. In terms

of how accurately tables were located and presented the user,

we need a realistic level of accuracy; tables do not need to be

identified down to the exact inch, but rather within at least half

of a table’s length. As such, inevitable but minimal error would

be tolerated and tables would still be reported correctly enough

that users would not fail to find their table. To dynamically

respond to changes in the table layout, we decided that periodic

updates every hour would be sufficient, since major table

movement is not frequent and we do not want to waste power

or processing time unnecessarily checking for changes. The

implementation also had to be non-intrusive to the operations

of the Table Unit, as in, not consume too much power or be

distracting to patrons. Keeping these specifications in mind, we

first looked at creating an indoor positioning system, however,

that idea was quickly abandoned. Since the dining hall is a

relatively small area, we would have to be able to detect

differences between signals on the order of nanoseconds. We

also thought to use ultrasound, as is a common method for

indoor localization, but this technology proved to be too

complex and robust for our needs.
 We consulted Professor Goeckel and Professor Kelly about

different ways to implement table localization functionality.

Professor Goeckel suggested we try to use the variation in wifi

access point strength to map the room, where individual

locations would have unique but relatively consistent wifi

strengths based on distance, but warned that this is not always

the case, even over larger distances than would be used in the

dining hall. We did some tests in the Worcester dining hall by

downloading software that measures the wifi signal strength at

particular locations. Unfortunately, the signal strength was not

consistent and it did not provide enough resolution to be able to

distinguish between one location and another location one

meter away. Professor Kelly suggested that we place a unique

pattern on the ceiling and equip the Table Units with small

cameras that can take a snapshot of the ceiling. Depending on

what piece of the pattern was shown in the snapshot, we could

determine the location of the Table Unit. We considered this

option but ultimately did not pursue it due to the extra cost the

camera would bring to the Table Units.
 The method that we are going to implement is by using an IR

camera on the Sky Unit and four IR LEDs on board the Table

Unit. The IR camera will not pick up the visual spectrum,

allowing the IR LEDs to be easily seen when turned on. The

position of each Table Unit will be found using the following

steps: First, before the system is in service, the Sky Unit will be

calibrated to the room. This is done by placing the Sky Unit

where it will be mounted, in a corner of the room, and placing

an IR LED at every other corner. The dimensions of the room

will be given. The IR camera will take a picture of the room and

then map the IR LEDs to the corners of the room. This will

create a rectangular space. This space will then be divided into

a grid so that the table locations can be pinpointed within it. To

find the location of each Table Unit, the Sky Unit will send a

command to a particular Table Unit to turn on all four of its IR

LEDs. The IR camera will take a picture of the dining hall and

compare this with the reference grid, finding the position of the

table. The Table Unit ID and position will then be sent to the

database and finally the mobile app for rendering.
 The Table Unit orientation is needed to determine which

button and LED corresponds to which seat, since the Table

Unit is not fixed to the table (for cleaning purposes). The Sky

Unit will determine orientation by sending a command to a

particular Table Unit to turn on one IR LED corresponding to

one of the seats. The IR camera will then take a picture of the

dining hall. From the light intensity, the Sky Unit can

determine the orientation of the unit by using a reference

guide to match light intensity to orientation.

D. Database/Server

 Our system will feature a set of databases, each of which

will store table data corresponding to a specific dining hall.

These databases will be populated with information obtained

from the Sky Unit regarding each Table Unit, as explained in

the previous sections, corresponding to table layout and

orientation, and seating occupancy status. Our app will fetch

data from the database corresponding to the user-selected

dining hall and use it to populate the app’s dining hall map and

respond to user searches. To this end, we decided to use

Amazon’s DynamoDB. DynamoDB is fast, flexible, and highly

scalable noSQL database hosted by Amazon Web Services.

DynamoDB is fully integrated with the full suite of AWS

services, including identity management and security. The

techniques needed to produce this part of are project were

acquired both in basic coding classes and through work

experience. A test of this part of our system would likely start

with the basic CRUD functionality and then test the integration

of the database with our greater system. If we can perform

CRUD operations properly and correctly connect the parts of

the system together, then the test will have passed.
 Before using DynamoDB, Amazon RDS was also

explored as a potential option, however it proved difficult to

interact with in the way we needed (specifically communication

with Raspberry Pi) due to how it handled security, and so the

other options were explored, which led us to DynamoDB.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

E. Android App

 Our app is one of the outward-facing parts of our

system. The app will allow the users to browse a seating map of

the dining halls and search the available tables by party size.

Android Studio IDE and Java were utilized to write and build

the app. A testing suite for this app would test the user’s ability

to select a dining hall, the app’s ability to update the table map

based on database changes, the app’s ability to communicate

with the Pi, and the app’s ability to search the table data by party

size. Proper outcomes from these tests would confirm proper

app functionality.

II. PROJECT MANAGEMENT

 As per the table above, our MDR goals focused on

implementing necessary functionality of our system and

integration of its components. Part of this was displayed by a

functional Table Unit with 4 LEDs to indicate the states of the

4 seats monitored by that unit. The states could be changed

physically on the unit via a button press and wirelessly at a

distance via the Sky Unit, which shows integration of sky and

Table Units and a step towards transmitting data from one end

of the system (phone app) to the other (Table Unit). Integration

of the Sky Unit and the server/app is currently in place with the

app providing a rudimentary user experience of viewing a

rendered, dynamic map of the dining hall tables, entering search

queries, and viewing the response. The app also uses data from

and responds to changes made in the AWS database, which can

be successfully interacted with via the Raspberry Pi on the Sky

Unit. These functionalities satisfy nearly all of the deliverables

lsited.
 The MDR deliverable that was only partially delivered

upon was the communication between Sky Unit and Table Unit.

In effect, the Table Unit and Sky Unit are successfully

communicating via the two SAMR21G processors aboard

either unit, but the processor aboard the Sky Unit is not yet

successfully connected to the Raspberry Pi. Currently, the

SAMR21G processor on the Sky Unit can successfully transmit

the necessary data when received serially from a computer, but

there is an issue with connecting serially to the Pi that will be

solved. As the Pi functions as a central hub of sorts, having a

successful connection between the Pi and the processor aboard

the Sky Unit results in full connectivity of the system from

Table Unit to the phone app.
 Alongside this issue, table localization is the next major

step to tackle in terms of its successful use, implementation, and

integration with the rest of our system. We will first test out the

IR camera and IR LED interaction, making sure that the camera

can detect the IR LEDs from an appropriate distance (the

farthest distance across the dining hall). After that is

established, we will work on creating a reference grid for a

room, starting out small, and then expanding for the size of the

dining hall. After that, we will then test the finding of the table

positions. As for orientation, we will test that light intensity is

a reliable way to tell orientation and create a reference guide

based on these tests. Then we will implement this in a small

setting, and then expand to the dining hall setting.
 There is also still overall optimization and automation

to be done to further enhance the basic functionality that we

have into what is necessary for the system to work as a whole.

More specifically, full Table Unit functionality needs to be

implemented in terms of relevant table localization aspects and

complete code for all possible table states and the behavior of

the LEDs to indicate said states. The code for the Pi aboard the

Sky Unit also needs to be completed such that the processing,

receiving, and sending of data is automated. A line of

communication needs to be opened between the app clients and

the Pi, so that the Pi is the only device making changes in the

database, in order to prevent reservation conflicts. A more

advanced searching functionality must be implemented for the

App, as well as a handful of UI updates.
 Since our project is easily broken up into components,

we split our team to work on each component relatively

individually. Discussion as a group, however, occurs regarding

each design decision and any changes or issues that come up.

Though everyone has an assigned focus on different aspects of

the project, there is great team involvement to help flesh out the

most efficient approach and to ensure that everyone is

consistently on the same page. We hold weekly meetings with

our advisor, Professor Wolf, where we discuss the project’s

current state, alternatives to current designs and potential issues

that might arise, and next steps. As a team, we also meet one to

two times per week to discuss the project amongst ourselves, to

work on components together, and to ensure proper integration

of our separate components. The team maintains email

communication with Professor Wolf and constant

communication within the team via GroupMe. Project

documentation and organization is maintained on Google

Drive.
 Dennis, our computer systems engineer, handles phone

app development and integration with the AWS server.

Relevant information in terms of functionality and

communication protocol are related to the rest of the team when

necessary so that the rest of the system may effectively

communicate with the database and app when needed. The

Table Unit is being primarily handled by Aarsh, who has great

familiarity with Atmel processors, code, and functionality. Matt

is mainly working with the Raspberry Pi aboard the Sky Unit in

terms of ensuring communication with the database and the

TABLE IV
MDR DELIVERABLES

Deliverable Percent Complete

Demonstrate basic Table unit
functionality:

• Change of state via button

• Communication to Sky Unit

90

Demonstrate functional app:

• UI – Rendered map and ability

to search for seats

• Communication to AWS

100

Demonstrate Sky Unit Communication to
AWS

100

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Atmel processor aboard the Sky Unit, and processing of data

that is transmitted throughout the system. Kristina is working

on table localization and how this interfaces with the Sky Unit.

As previously mentioned, each component has substantial input

from the team as a whole to ensure that the best method to

solving the problem and implementing the solution has been

found and agreed upon.

 Figure 2 below is our Gantt Chart detailing the start of

our project up to its end.

III. CONCLUSION

 By meeting our MDR deliverables, we have established

almost complete integration and communication from one end

of our system to the other. The fundamental skeleton upon

which our project resides has been built and communication

protocols have been determined. Piecewise, our system is

integrated. We still have yet to link the Raspberry Pi to the

SAMR21G aboard the Sky Unit and implement the table

localization functionality, the former being trivial and the latter

is in the developmental stage. Our project has taken a few twists

and turns to arrive at this point. We scaled back our original

idea and also sought simpler solutions to the problems we were

trying to tackle. We met frequently and held each other

accountable for the assigned tasks. Through this, we were able

to create the framework for our project and create a clear idea

of what our end goal will be. The next step is to build upon this

framework and optimize power consumption for the Table Unit.

We are aiming for a low power embedded system and will need

to utilize the wake and sleep functionalities to our advantage.

We will be drafting up the PCB schematic in the coming months

so that we can have a running start to next semester. Since we

are unfamiliar with the designing of PCBs, this part will prove

to be a challenge for us, but starting early on the design will set

us up for success. We will start working on the table localization

functionality early on in the semester as well, since it is a key

component in integrating the entire system. We have a few

challenges ahead of us and a lot more mileage to put in before

SDP day, but we are well on our way to getting there.

APPENDIX

Figure 1A. Definitions of the protocol for the Table Unit to Sky Unit

Communication.

ACKNOWLEDGMENT

We would like to thank our advisor Professor Tilman Wolf

and evaluators Professors Eric Polizzi and Csaba Moritz for

their very useful critiques and insightful advice that helped

guide our project. We would also like to thank Professors

Patrick Kelly and Dennis Goeckel for taking the time to meet

with us and discuss potential options for a part of our project.

Dennis Donoghue would like to specifically thank the creators

and users of the website StackExchange for boundless advice

and help.

Figure 2. Gantt Chart detailing current progress as well as our plans for the future.

