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Abstract— The EfficienSeat system is proposed as a solution to 

address problems and inefficiencies presented by overcrowded 

dining halls. Through real time monitoring of individual seats via 

sleek, LED based, modular units on every table, users walking 

through the dining hall can easily ascertain seating occupancy at a 

glance and claim their seats with ease. Further, these units will 

ultimately communicate this information to users outside the 

dining hall via a phone application in the form of a real time map, 

giving a simple visual way to determine dining hall occupancy and 

viable seating locations. 

 

I. INTRODUCTION 

ining halls on our campus suffer from problems in 

seating that limit their overall efficiency. During 

especially busy times, incoming patrons have no way of 

knowing if there will be seats available for them as they commit 

to entering a dining hall. This leads to masses of people 

traveling up and down walkways searching for a potential open 

seat within a sea of people. The more people to a party, the more 

challenging and frustrating it gets to find seating. Patrons are 

then faced with the equally unfavorable choices of using their 

limited time walking throughout the entirety of the dining hall 

an unknown amount of times until they find a seat, or leaving 

and wasting the meal swipe or money that they committed to 

enter the hall. Not only does this waste the patron’s time, but 

also that of the dining hall workers, who are trying to use these 

same walkways to keep the dining hall operating smoothly by 

refilling food or dishware, for example. These time delays, 

though potentially minimal in single instances, add up and are 

extremely detrimental in a food service setting.  
   We sought to design a system that would decrease these 

frustration and time delays, and explored several methods of 

implementation. One of the big factors we had to decide on was 

whether to opt for an active or passive system. An active system 

being one that completely controls where patrons will sit and a 

passive system that reacts to where patrons choose to sit. A 

completely active system would be one akin to the restaurant 

reservation system, one where patrons are told where to sit. This 

system would be good for maximum seating efficiency, but is 

not suitable for a dining hall environment. Patrons would be 

averse to the idea of being told where to sit, especially when the 

dining hall is relatively empty. Also, the sheer number of seats 

to manage in a dining hall also makes this approach inefficient. 
 On the opposite end of the spectrum, we contemplated doing 

an entirely passive system, one that would indicate seat status 
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based on the seats people chose to sit at. This system would 

sense when someone was sitting at a particular seat and then 

relay this information to patrons inside and outside the dining 

hall. This is favorable because patrons will not have to do 

anything new in this system, but it would be expensive and 

complex to implement. For the solution that we came up with, 

we went with a hybrid between these two approaches. 
            With the hybrid system in mind, we then considered the 

specific needs of our solution. The solution needs to 

satisfactorily address both patrons and dining hall staff in 

regards to efficiency and time delay, and one that does so via 

an implementation that is easy to maintain and non-invasive to 

the normal operation of the dining hall. More specifically, the 

system needs to be able to accurately indicate the seating status 

within the dining hall to incoming patrons, allowing them to see 

seat availability and identify where they are able to and would 

like to sit. To be effective, the system needs to be able to 

monitor several hundred seats, as would be present within the 

dining hall area. At the same time, the system must not be 

invasive; neither patrons nor the staff should have to work 

around the system, or be interrupted by it during normal 

operation. More specific to the dining hall staff the system must 

also be easy to maintain, requiring easy installation and 

infrequent maintenance. Ideally, the only maintenance that 

should be required would be battery replacement once a month 

for individual monitoring units. Given that this system is to 

operate in an environment around food, there are also standards 

to consider regarding both food safety and the safety of the 

device. In regards to safety of the device, it should be IPX4 

compliant, which indicates that it can withstand splashing and 

spills.  
   To satisfy these needs, the system will be composed of 

a number of nodes situated about the dining hall on the tables 

to directly monitor the seats. These nodes will need to be 

minimal in size and self-sufficient in terms of power; this 

coincides with the low maintenance requirement, where routine 

“refilling” of power should be reasonably infrequent, to the tune 

of monthly changes. Every node will be connected to a central 
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TABLE I 
SPECIFICATIONS 

Specification Value 

Amount seat supported >=100 seats 
Phone App Response Time <2 seconds 

Table Unit Area <16in2 

IPX4 Compliant 
Battery Life ~1 month 
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hub, creating a network that will reliably monitor the seating 

situation and ultimately report this to the user via a phone 

application. Table 1 quantifies these specifications.  
 

A. Overview

 
Fig 1. Block diagram of our system. There are four main blocks that make up 

our system: the Table Unit, Sky Unit, Database Server, and Android App. 

To solve this problem, we will design a network to be 

installed within a dining hall that will allow for real time 

monitoring of seat occupancy and consistent reporting of this 

data to users, both inside and outside of the dining hall.  As 

shown in the block diagram in Figure 1, this network will 

consist of 4 major components: 1) the aforementioned nodes - 

dubbed “Table Units,” 2) a “Sky Unit,” 3) a database, and 4) a 

phone application. Each block’s purpose will be outlined in this 

design section, with more detailed descriptions being provided 

in the following sections respective to each block.  
Patrons of the dining hall, who will be the users of this 

system, will interact with it from two points: the phone 

application and the table units. Table units will populate the 

dining hall as compact units each containing 4 buttons and a 

number of multi-purpose LEDs, with each unit monitoring 4 

seats. Single tables will only require 1 table unit while longer 

ones will utilize multiple units. These units provide the first 

point of user interaction by allowing users to claim seats by 

pressing a button, and seat status will be indicated via the LEDs, 

providing a simple method of identifying occupancy at a glance 

for users within the dining hall. By having an easy to interpret 

system to claim seats the issue of patrons marking their spots 

with valuable items like phones or keys is eliminated and 

individual seats will be clearly marked as per their associated 

LED, instead of an ambiguously placed coat, bag, or phone on 

the table.  Seat occupancy information will be reported from 

each table unit to the Sky Unit, which will be the central hub of 

the network. As the central hub, it will process the table unit 

data and function as the medium of communication between the 

table units and the database/app side of the system. Alongside 

this, the Sky Unit will also perform table localization, the 

information of which will be used to accurately report seating 

data to users via the app. 
From the Sky Unit, seating information will be sent to 

the database, for which we have chosen to use Amazon 

DynamoDB. The database will be constantly updated in real 

time by both the Sky Unit and the phone app so that it will 

contain up to date information of all seats within the dining hall. 
The phone application provides the other end of user 

interaction with our system. Namely, users will be able to not 

only observe the seating situation within the dining hall from 

their phone, but also search for available seats as per the number 

of people within their party and reserve these seats from the app. 

Using information queried from the database and the 

aforementioned table localization data the app will generate a 

map of the dining hall that indicates the occupancy of seats for 

the user. Communication will be maintained throughout the 

entire network so that, for instance, a seat reservation indicated 

from the phone app will be received by the table unit relatively 

instantaneously. With a basic outline of the functionality of the 

system, each block will now be discussed in greater detail in 

terms of protocol, components, and the like. Although many 

alternative designs were considered, these were more specific 

to the technologies used within each block; the overall topology 

of the system has remained largely the same its inception. These 

alternatives will be discussed in detail in the following sections. 
 

B. Table Unit 

The table unit is the interactive device for the users at the 

table itself and is a small modular unit containing 4 visual LEDs 

and 4 buttons, corresponding to 4 seats that the unit is 

monitoring. It will also contain 4 IR LEDs, which will be 

discussed later in regards to table localization. The visual LEDs 

will be used to indicate the status of the seats to the user, namely 

whether they are taken or not. The buttons will be used to 

confirm reservations of seats made from the app, and to 

occupy/vacate seats without the app. The final product will be 

splash-proof (IPX4 compliance mentioned in the introduction) 

and easy to maintain with low power consumption. The 

following table shows the seat state corresponding to the LED 

responses:  

  The above explanation gives us the requirements for the 

processor selection. 
• The processor needed to be able to communicate 

through a network with the ability to handle multiple 

request at any time. 

• It should be low powered to keep the maintenance of 

the unit to minimal. 

• It should be able to take input from four buttons and 

output to four leds.  

   SAMR21 by Microchip Technology inc. seemed to be 

the right choice. The microcontroller (SAMR21) has a System 

on Chip for IEEE 802.15.4 communication protocol. This is a 

low powered and low bandwidth network protocol generally 

TABLE II 

TABLE UNIT CHAIR STATES 

Chair State LED Response 

Vacant OFF 

Occupied ON 

Reserved Slow Pulse 
About to Expire Slow Pulse 
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used to communicate to low powered remote devices. The stack 

provided by Microchip, Bitcloud, is well supported for this 

microcontroller. Some of its features are: 
• Network management of more than sixty-five 

thousand nodes. 

• Automatic queuing of incoming packets. 

• Confirmation packet for received data. 

   The project started with a few example codes in Atmel 

Studio Framework to better understand the overall code that 

would govern operation of the Table Unit. Simple network 

communication was established between two SAMR21 boards 

via their built in RF antennas. The range of communication was 

established to be beyond 50 feet through testing with a wall 

barrier which is more than enough to communicate to any 

corner of a dining common from its center. Further testing was 

done including button debouncing optimization to give a 

smoother interface for the user. The Table Unit will be tested 

using a default set of commands including the following 

responses: 
• Button press toggles state vacant and occupied. 

• Message received from Sky Unit shall be processed 

and signified on leds. 

• Reserved state shall go to occupied when button is 

pressed. 

• Timer state shall give a pulse on the corresponding 

LED. 

• Data shall be sent when a button is pressed at the Table 

Unit which should be properly received at the 

coordinator in Sky Unit. 

C. Sky Unit 

   The Sky Unit will be composed of the same Atmel 

SAMR21G processor used in the Table Unit as well as a 

Raspberry Pi 3 board. For table localization, a Raspberry Pi 

NoIR camera module will be used. These three components will 

all operate from wall power. The Sky Unit functions as a central 

hub for all of the Table Units, and an intermediate link between 

the Table Units and the database/app. The SAMR21G board 

will be used to communicate wirelessly with the Table Units via 

the Atmel Bitcloud stack, as explained in the Table Unit 

section. While the Sky Unit is the central hub of the system 

from a block diagram point of view, the Raspberry Pi is the true 

center; the Pi was chosen for its power and versatility as a 

computer coupled with easy to use functionality and an 

abundance of documentation available online. For 

communicating data between the Table Units and the database 

the Pi will receive and process data via code written in Python 

using Boto 3, which is Amazon’s own SDK for Python. As we 

chose to utilize Amazon Web Services (AWS) for our database 

server, which will be addressed in more detail in the following 

section, Boto 3 was a reliable choice for integration as it is very 

well documented by AWS and provides a method of easy to 

use, low level access to the database from the Pi. Given that 

Python code is easily written and used on the Raspberry Pi, this 

is the perfect option that provides a simple, reliable, and 

efficient way of both writing to and reading from the database 

with the Pi. By utilizing the Atmel Bitcloud stack and the Boto 

3 SDK, we effectively have successful communication between 

the Table Units and the database. 
 In terms of interfacing the Pi with the database, alternatives 

were explored as per the database chosen; Boto 3 was our final 

choice as we settled on Amazon DynamoDB, with which Boto 

3 is closely coupled, but a previous option was that of Amazon 

RDS - the choice to switch databases will be discussed in the 

following section. In terms of interfacing the Pi with RDS, 

simple interaction was available through the use of MySQL at 

the cost of security due to the nature of the connection. In order 

to successfully interact with the database, a lot of the security 

authentications needed to be removed. With DynamoDB, 

initially connecting to the database involves a bit more work, 

but the overall process of interacting is simpler with respect to 

the Pi, and more secure in terms of the connection. 
In order to communicate seating data efficiently throughout 

the system, we needed to design a protocol for the information. 

To do this, we identified the pertinent information that would 

be present and required for successful data transmission in 

terms of accurately monitoring and altering seating states and 

maintaining system status, which boiled down to Table ID (with 

what Table Unit are we communicating?), command type (are 

we changing seat occupancy? telling the Table Unit to sleep?), 

and data (seat is now occupied, Table Unit action). Our resultant 

protocol consists of 5-byte strings, as displayed in the table 

below (Table III). 

TABLE III 
PROTOCOL 

ADDRESS COMMAND DATA PIN 

2 Bytes 1 Byte 1 Byte 1 Byte 

The first 2 bytes of the string correspond to the Table Unit 

address, which will be acquired during calibration. The next 3 

bytes each correspond to the command type, the data, and the 

pin (seat), respectively. An example command for a seat 

reservation would be as follows: “01 1 2 2,” where 01 

correspond to the address of the Table Unit, and 1 corresponds 

to a “change seat state” command. Given that the seat state is 

changing, the fourth byte will correspond to vacant, occupied, 

or reserved (2 for reserved in this case). Finally, we need to 

know which seat of the four corresponding to this Table Unit 

are being affected - here we are changing Seat 2 to reserved. 

Figure 1A in the Appendix displays all of the possible values 

for each byte and their corresponding meanings.  
 To test this block in terms of the Sky Unit’s ability to process 

and transmit data to and from the server, we communicated 

example data as per the previously described protocol to alter 

data within the database. By writing a Python program utilizing 

Boto 3 to establish a connection with the database and both 

request and modify specific table information within the 

database, we could exercise a reliable method of wirelessly 

interacting with the database from the Sky Unit, and more 

specifically the Pi on the Sky Unit. This functionality will 

further be tested by automating the process of sending and 

receiving data to and from the database and having it occur 

automatically in response to changes elsewhere in the system, 

such as when a seat’s state is changed on the Table Unit itself. 

The protocol itself was also tested via communication between 
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the Table Unit and the Sky Unit, where data sent in this protocol 

from the Sky Unit successfully resulted in the desired change 

on the Table Unit. 
 Table Localization: Another important aspect of our system 

is determining the position and orientation of each Table Unit 

in the dining hall. This data is needed for an accurate mapping 

of the tables and seats on the mobile app. Without it, our system 

could tell the app user that a particular table and seat is open but 

not where the table is or which of the four seats are available. 

We could have opted for a static implementation of the Table 

Unit locations with each unit being mapped to a template of the 

room before the system was in service, but we wanted our 

system to have adaptability in table positions in case tables were 

moved, like if patrons pushed two tables together to seat eight 

people, for example. We felt as if this was more reflective of a 

practical implementation of our system. Now let’s talk about 

the methods we considered to implement the table localization 

functionality. 
 We first thought about what our system needed in order to 

have reliable, effective, and dynamic table localization. In terms 

of how accurately tables were located and presented the user, 

we need a realistic level of accuracy; tables do not need to be 

identified down to the exact inch, but rather within at least half 

of a table’s length. As such, inevitable but minimal error would 

be tolerated and tables would still be reported correctly enough 

that users would not fail to find their table. To dynamically 

respond to changes in the table layout, we decided that periodic 

updates every hour would be sufficient, since major table 

movement is not frequent and we do not want to waste power 

or processing time unnecessarily checking for changes. The 

implementation also had to be non-intrusive to the operations 

of the Table Unit, as in, not consume too much power or be 

distracting to patrons. Keeping these specifications in mind, we 

first looked at creating an indoor positioning system, however, 

that idea was quickly abandoned. Since the dining hall is a 

relatively small area, we would have to be able to detect 

differences between signals on the order of nanoseconds. We 

also thought to use ultrasound, as is a common method for 

indoor localization, but this technology proved to be too 

complex and robust for our needs.  
 We consulted Professor Goeckel and Professor Kelly about 

different ways to implement table localization functionality. 

Professor Goeckel suggested we try to use the variation in wifi 

access point strength to map the room, where individual 

locations would have unique but relatively consistent wifi 

strengths based on distance, but warned that this is not always 

the case, even over larger distances than would be used in the 

dining hall. We did some tests in the Worcester dining hall by 

downloading software that measures the wifi signal strength at 

particular locations. Unfortunately, the signal strength was not 

consistent and it did not provide enough resolution to be able to 

distinguish between one location and another location one 

meter away. Professor Kelly suggested that we place a unique 

pattern on the ceiling and equip the Table Units with small 

cameras that can take a snapshot of the ceiling. Depending on 

what piece of the pattern was shown in the snapshot, we could 

determine the location of the Table Unit. We considered this 

option but ultimately did not pursue it due to the extra cost the 

camera would bring to the Table Units.  
 The method that we are going to implement is by using an IR 

camera on the Sky Unit and four IR LEDs on board the Table 

Unit. The IR camera will not pick up the visual spectrum, 

allowing the IR LEDs to be easily seen when turned on. The 

position of each Table Unit will be found using the following 

steps: First, before the system is in service, the Sky Unit will be 

calibrated to the room. This is done by placing the Sky Unit 

where it will be mounted, in a corner of the room, and placing 

an IR LED at every other corner. The dimensions of the room 

will be given. The IR camera will take a picture of the room and 

then map the IR LEDs to the corners of the room. This will 

create a rectangular space. This space will then be divided into 

a grid so that the table locations can be pinpointed within it. To 

find the location of each Table Unit, the Sky Unit will send a 

command to a particular Table Unit to turn on all four of its IR 

LEDs. The IR camera will take a picture of the dining hall and 

compare this with the reference grid, finding the position of the 

table. The Table Unit ID and position will then be sent to the 

database and finally the mobile app for rendering. 
 The Table Unit orientation is needed to determine which 

button and LED corresponds to which seat, since the Table 

Unit is not fixed to the table (for cleaning purposes). The Sky 

Unit will determine orientation by sending a command to a 

particular Table Unit to turn on one IR LED corresponding to 

one of the seats. The IR camera will then take a picture of the 

dining hall. From the light intensity, the Sky Unit can 

determine the orientation of the unit by using a reference 

guide to match light intensity to orientation. 

D. Database/Server 

  Our system will feature a set of databases, each of which 

will store table data corresponding to a specific dining hall. 

These databases will be populated with information obtained 

from the Sky Unit regarding each Table Unit, as explained in 

the previous sections, corresponding to table layout and 

orientation, and seating occupancy status. Our app will fetch 

data from the database corresponding to the user-selected 

dining hall and use it to populate the app’s dining hall map and 

respond to user searches. To this end, we decided to use 

Amazon’s DynamoDB. DynamoDB is fast, flexible, and highly 

scalable noSQL database hosted by Amazon Web Services. 

DynamoDB is fully integrated with the full suite of AWS 

services, including identity management and security. The 

techniques needed to produce this part of are project were 

acquired both in basic coding classes and through work 

experience. A test of this part of our system would likely start 

with the basic CRUD functionality and then test the integration 

of the database with our greater system. If we can perform 

CRUD operations properly and correctly connect the parts of 

the system together, then the test will have passed. 
  Before using DynamoDB, Amazon RDS was also 

explored as a potential option, however it proved difficult to 

interact with in the way we needed (specifically communication 

with Raspberry Pi) due to how it handled security, and so the 

other options were explored, which led us to DynamoDB.  
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E. Android App 

  Our app is one of the outward-facing parts of our 

system. The app will allow the users to browse a seating map of 

the dining halls and search the available tables by party size. 

Android Studio IDE and Java were utilized to write and build 

the app. A testing suite for this app would test the user’s ability 

to select a dining hall, the app’s ability to update the table map 

based on database changes, the app’s ability to communicate 

with the Pi, and the app’s ability to search the table data by party 

size. Proper outcomes from these tests would confirm proper 

app functionality. 

II. PROJECT MANAGEMENT 

   As per the table above, our MDR goals focused on 

implementing necessary functionality of our system and 

integration of its components. Part of this was displayed by a 

functional Table Unit with 4 LEDs to indicate the states of the 

4 seats monitored by that unit. The states could be changed 

physically on the unit via a button press and wirelessly at a 

distance via the Sky Unit, which shows integration of sky and 

Table Units and a step towards transmitting data from one end 

of the system (phone app) to the other (Table Unit). Integration 

of the Sky Unit and the server/app is currently in place with the 

app providing a rudimentary user experience of viewing a 

rendered, dynamic map of the dining hall tables, entering search 

queries, and viewing the response. The app also uses data from 

and responds to changes made in the AWS database, which can 

be successfully interacted with via the Raspberry Pi on the Sky 

Unit. These functionalities satisfy nearly all of the deliverables 

lsited. 
   The MDR deliverable that was only partially delivered 

upon was the communication between Sky Unit and Table Unit. 

In effect, the Table Unit and Sky Unit are successfully 

communicating via the two SAMR21G processors aboard 

either unit, but the processor aboard the Sky Unit is not yet 

successfully connected to the Raspberry Pi. Currently, the 

SAMR21G processor on the Sky Unit can successfully transmit 

the necessary data when received serially from a computer, but 

there is an issue with connecting serially to the Pi that will be 

solved. As the Pi functions as a central hub of sorts, having a 

successful connection between the Pi and the processor aboard 

the Sky Unit results in full connectivity of the system from 

Table Unit to the phone app.  
   Alongside this issue, table localization is the next major 

step to tackle in terms of its successful use, implementation, and 

integration with the rest of our system. We will first test out the 

IR camera and IR LED interaction, making sure that the camera 

can detect the IR LEDs from an appropriate distance (the 

farthest distance across the dining hall). After that is 

established, we will work on creating a reference grid for a 

room, starting out small, and then expanding for the size of the 

dining hall. After that, we will then test the finding of the table 

positions. As for orientation, we will test that light intensity is 

a reliable way to tell orientation and create a reference guide 

based on these tests. Then we will implement this in a small 

setting, and then expand to the dining hall setting. 
   There is also still overall optimization and automation 

to be done to further enhance the basic functionality that we 

have into what is necessary for the system to work as a whole. 

More specifically, full Table Unit functionality needs to be 

implemented in terms of relevant table localization aspects and 

complete code for all possible table states and the behavior of 

the LEDs to indicate said states. The code for the Pi aboard the 

Sky Unit also needs to be completed such that the processing, 

receiving, and sending of data is automated. A line of 

communication needs to be opened between the app clients and 

the Pi, so that the Pi is the only device making changes in the 

database, in order to prevent reservation conflicts. A more 

advanced searching functionality must be implemented for the 

App, as well as a handful of UI updates.  
  Since our project is easily broken up into components, 

we split our team to work on each component relatively 

individually. Discussion as a group, however, occurs regarding 

each design decision and any changes or issues that come up. 

Though everyone has an assigned focus on different aspects of 

the project, there is great team involvement to help flesh out the 

most efficient approach and to ensure that everyone is 

consistently on the same page. We hold weekly meetings with 

our advisor, Professor Wolf, where we discuss the project’s 

current state, alternatives to current designs and potential issues 

that might arise, and next steps. As a team, we also meet one to 

two times per week to discuss the project amongst ourselves, to 

work on components together, and to ensure proper integration 

of our separate components. The team maintains email 

communication with Professor Wolf and constant 

communication within the team via GroupMe. Project 

documentation and organization is maintained on Google 

Drive. 
  Dennis, our computer systems engineer, handles phone 

app development and integration with the AWS server. 

Relevant information in terms of functionality and 

communication protocol are related to the rest of the team when 

necessary so that the rest of the system may effectively 

communicate with the database and app when needed. The 

Table Unit is being primarily handled by Aarsh, who has great 

familiarity with Atmel processors, code, and functionality. Matt 

is mainly working with the Raspberry Pi aboard the Sky Unit in 

terms of ensuring communication with the database and the 

TABLE IV 
MDR DELIVERABLES 

Deliverable Percent Complete 

Demonstrate basic Table unit 
functionality: 

• Change of state via button 

• Communication to Sky Unit 

90 

Demonstrate functional app: 

• UI – Rendered map and ability 

to search for seats 

• Communication to AWS 

100 

Demonstrate Sky Unit Communication to 
AWS 

100 
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Atmel processor aboard the Sky Unit, and processing of data 

that is transmitted throughout the system. Kristina is working 

on table localization and how this interfaces with the Sky Unit. 

As previously mentioned, each component has substantial input 

from the team as a whole to ensure that the best method to 

solving the problem and implementing the solution has been 

found and agreed upon.  

  Figure 2 below is our Gantt Chart detailing the start of 

our project up to its end. 

 

III. CONCLUSION 

   By meeting our MDR deliverables, we have established 

almost complete integration and communication from one end 

of our system to the other. The fundamental skeleton upon 

which our project resides has been built and communication 

protocols have been determined. Piecewise, our system is 

integrated. We still have yet to link the Raspberry Pi to the 

SAMR21G aboard the Sky Unit and implement the table 

localization functionality, the former being trivial and the latter 

is in the developmental stage. Our project has taken a few twists 

and turns to arrive at this point. We scaled back our original 

idea and also sought simpler solutions to the problems we were 

trying to tackle. We met frequently and held each other 

accountable for the assigned tasks. Through this, we were able 

to create the framework for our project and create a clear idea 

of what our end goal will be. The next step is to build upon this 

framework and optimize power consumption for the Table Unit. 

We are aiming for a low power embedded system and will need 

to utilize the wake and sleep functionalities to our advantage. 

We will be drafting up the PCB schematic in the coming months 

so that we can have a running start to next semester. Since we 

are unfamiliar with the designing of PCBs, this part will prove 

to be a challenge for us, but starting early on the design will set 

us up for success. We will start working on the table localization 

functionality early on in the semester as well, since it is a key 

component in integrating the entire system. We have a few 

challenges ahead of us and a lot more mileage to put in before 

SDP day, but we are well on our way to getting there. 

 

 

 

 

 

 

APPENDIX 

 
Figure 1A. Definitions of the protocol for the Table Unit to Sky Unit 

Communication. 
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Figure 2. Gantt Chart detailing current progress as well as our plans for the future. 


