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Abstract—The EfficienSeat system is proposed as a solution to 

address problems and inefficiencies presented by overcrowded 
dining halls. Through real time monitoring of individual seats via 
sleek, LED based, modular units on every table, users walking 
through the dining hall can easily ascertain seating occupancy at a 
glance and claim their seats with ease. Further, these units will 
ultimately communicate this information to users outside the 
dining hall via a phone application in the form of a real time map, 
giving a simple visual way to determine dining hall occupancy and 
viable seating locations. 

I. INTRODUCTION 

INING halls on our campus suffer from problems in seating 
that limit their overall efficiency. During busy times, 
incoming patrons require info on available seating. 

Without this information people travel up and down walkways 
searching for a potential open seat. Larger parties face more 
difficulty in finding seats.  Patrons are then faced with the 
equally unfavorable choices of using their limited time walking 
throughout the entirety of the dining hall an unknown amount 
of times until they find a seat or leaving and wasting the meal 
swipe or money that they committed to enter the hall. This also 
inhibits staff ability to quickly refill food and dishware 
throughout the dining hall. These time delays, though 
potentially minimal in single instances, add up and are 
detrimental in a food service setting. 
    We sought to design a system that would decrease these 
frustrations and time delays and explored several methods of 
implementation. A big factor was whether to use an active or 
passive system. An active system completely controls where 
patrons sit while a passive system reacts to where patrons 
choose to sit. A completely active system would be akin to a 
restaurant reservation system. This system would be good for 
maximum seating efficiency but is not suitable for a dining hall 
environment. Patrons would be averse to the idea of being told 
where to sit, especially when the dining hall is relatively empty. 
The sheer number of seats to manage in a dining hall also makes 
this approach inefficient. 
    On the opposite end of the spectrum we contemplated an 
entirely passive system, one that indicates seat status based on 
the seats at which people choose to sit. This system senses when 
someone is sitting at a particular seat and then relays this 
information to patrons inside and outside the dining hall. This 
system is favorable because patrons will not have to do 
anything new, however, it would be expensive and complex to 
implement. Our solution was a hybrid of the two approaches. 
With the hybrid system in mind, we then considered the specific 
needs of our solution. The solution must improve time and 
travel efficiency for patrons and staff. To do this, it must 
accurately identify seating status and indicate this to incoming 
patrons. It must also be simple to service without interrupting 

the normal operation of the dining hall e.g. easy to install and 
requiring infrequent maintenance. The only maintenance that 
should be required would be battery replacement once a month 
for individual monitoring units. The system should be IPX4 [1] 
compliant to comply with food safety standards and to ensure 
reliable operation. 
    To satisfy these needs, the system will consist of nodes 
situated on every table in the dining hall, all reporting to a 
central hub. The nodes need to be small and self-sufficient in 
terms of power; this coincides with the low maintenance 
requirement, where routine recharging should be monthly. 
Every node will be connected to a central hub, creating a 
network that will reliably monitor the seating situation and 
ultimately report this to the user via a phone application. Table 
1 quantifies these requirements. 

  

II. DESIGN 

A. Overview 

To solve this problem, we designed a network within a dining 
hall that has real time monitoring of seat occupancy and 
consistent reporting of this data to users. The data is accessible 
to users both inside and outside of the dining hall. As shown in 
the block diagram in Figure 1, this network consists of four 
subsystems: 1) the nodes - dubbed ‘Table Units,’ 2) a ‘Sky 
Unit,’ 3) a database, and 4) a phone application. The purpose of 
each subsystem and the interaction between them is outlined in 
the overview, with more detailed descriptions provided in the 
following sections. 
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TABLE I 

REQUIREMENTS AND SPECIFICATIONS 

Requirement Specification 

Table search functionality Users can search for available seats 
by party size through a mobile app 

App users will receive timely 
graphical response 

Updated map displayed within 2 
seconds 

App users can find their 
tables from the map on the 
mobile app  

Table locations will be accurate to ½ 
a table length 

System can manage entire 
dining hall 

Can support > 100 seats 

Table unit is splash-proof and 
safe for use in a dining hall 

Table unit is compliant with IPX4 

System can accommodate 
non-app users  

Patrons can claim seats by pressing a 
button on the Table Unit 

Infrequent maintenance Monthly battery replacement 
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Fig 1. Block diagram of our system. There are four main blocks that make up 
our system: The Table Unit, Sky Unit, Database Server, and Android App. 
 

Patrons of the dining hall, the users of our system, interact 
with it from two points: the phone application and the Table 
Units. Table Units populates the dining hall as compact units, 
one per table of four seats. These units provide the first point of 
user interaction within the dining hall: users claim seats by 
pressing a button, and the LEDs on the unit indicate seat status, 
providing a simple method of identifying occupancy at a 
glance. By having an easy-to-interpret system to claim seats, 
the issue of patrons marking their spots with valuable items like 
phones or keys is eliminated and seat status will be clearly 
marked via the LEDs, eliminating the ambiguity of a stray coat 
or left behind dishware. 

Seat status is reported from each Table Unit to the Sky Unit, 
the central hub of the network. As the hub, it processes the 
Table Unit data and functions as the medium of communication 
between the Table Units and the database/app side of the 
system. Alongside this, the Sky Unit will also perform table 
localization; this information is used to accurately report seat 
status to users via the app. 

From the Sky Unit, seat statuses are sent to the database. The 
database is constantly updated in real-time by both the Sky Unit 
and the phone app so that it contains up-to-date information of 
all seats within the dining hall. 

The phone application provides the other point of user 
interaction with our system from outside of the dining hall. 
Namely, users can view a map of the dining hall with table 
occupancy, search for available seats by party size, and reserve 
seats, all from the convenience of their phone. The map of the 
dining hall is generated using information queried from the 
database for table occupancy and the localization data for the 
position of each table within the dining hall. With a basic 
outline of the system’s functionality and interactions 
established, the following sections delve into each subsystem 
more, discussing design choices and alternatives, protocols, and 
component interactions. 

B. Table Unit 

The Table Unit is a small modular unit for user interaction at 
the table itself containing a visual LED and button pair for each 
of the table’s four seats (See Figure 2). It also contains four IR 
LEDs, which will be discussed later regarding table 
localization. The visual LEDs are used to indicate the status of 

the seats to the user, namely whether the seat is taken or not. 
The buttons are used to confirm seat reservations made from the 
app and to occupy and vacate seats without the app.  

 
Fig 2. Picture of the final Table Unit Design. There are four LED push 
buttons on each side and four IR LEDs on each corner. The front panel 
houses the ON/OFF switch and microUSB port for charging.  
 

These components are integrated with a battery power supply 
and the Atmel SAMR21G board by our custom PCB, which 
will be discussed below. The following table shows the seat 
state corresponding to the LED responses: 

 

   
 
    The following bullets guided us on selecting the processor to 
be used on the Table Unit: 

 The processor needs to support a wireless network 
with low bandwidth and energy. 

 The processor shall be able to handle at least hundred 
nodes on a network. 

 It should be low powered to keep the maintenance of 
the unit to a minimum. 

 Needs to also take input from four buttons and output 
to eight LEDs. 

The SAMR21 microcontroller [2] by Microchip Technology 
Inc. seemed to be the right choice. The microcontroller has a 
System on Chip to connect the Table Unit to a network based 
on IEEE 802.15.4 communication protocol [3]. This is a low 
bandwidth network protocol due to reduced power 
requirements to run the network. The Lightweight Mesh 
protocol provided by Microchip is well supported for this 
microcontroller [4]. Some of its features are: 

 Network management of more than sixty-five 
thousand nodes. 

 Queuing of incoming packets. 
 Callbacks to confirm data received. 

TABLE II 
TABLE UNIT CHAIR STATES 

Chair State LED Response 

Vacant OFF 
Occupied ON 

Reserved Flashing 
About to Expire Flashing 
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    The project started with a few example codes in Atmel Studio 
Framework to better understand the overall code that would 
govern operation of the Table Unit. Simple network 
communication was established between two SAMR21 boards 
via their built-in RF antennas. The range of communication was 
established to be beyond 50 feet through testing with a wall 
barrier, this range is more than enough to communicate to any 
corner of a dining common from its center. Further testing was 
done including button debouncing optimization to give a 
smoother interface for the user. Typical Table Unit operation 
was tested using a default set of commands including the 
following responses: 

 Button press shall toggle states between vacant and 
occupied. 

 Message received from Sky Unit shall be processed 
and signified on LEDs. 

 Reserved state shall go to occupied when button is 
pressed. 

 Timer state shall give a pulse on the corresponding 
LED. 

 Data shall be sent when a button is pressed at the Table 
Unit which should be properly received at the 
coordinator in Sky Unit. 

 
Fig 3. CAD Layout of the custom-built PCB. The board was built using the 
services provided by OSH Park and soldered using SDP soldering equipment. 
 

The Table Unit uses a custom-built PCB to accommodate a 
few extra features for robustness, utility and ease of use for both 
the user and dining hall staff. The features included in the 
custom PCB are as follows: 

 Booster circuit - supports up to four Panasonic Model 
18650 batteries; total capacity = 13600 mAh. 

 Charging circuit - charges the batteries at 500 mA with 
a status LED. The charging can be done using any 
standard micro USB type B port. 

 Main switch to turn units off if not used, reducing the 
current to less than 10 µA. 

 GPIO connections to breakout SAMR21 Xplained pro 
board to precisely fit IR-LEDs and buttons onto the 
case with their respective resistances. 

In addition, the PCB stands as the main frame to hold the 
Xplained pro board with nylon standoffs. A second set of drills 
enable the board to easily fit with the custom-built case. All 
GPIO pins use standard double row male pin heads for 
maximum compatibility and easy swap of components. 

 
Fig 4. CAD model of the Table Unit case. The unit was designed in Autodesk 
Fusion 360 and 3D printed at M5 using both ABS and PLA. 
  

The PCB, SAMR21 board, and batteries are housed inside 
the Table Unit case. The case was designed in Autodesk 
Fusion 360 and 3D printed at M5 using both ABS and PLA. In 
practice, these units would be made from a more durable and 
smooth material like acrylic or nylon. The table unit has three 
parts, a top piece for mounting the push buttons and IR LEDs, 
as well as providing access to the microUSB port and 
ON/OFF switch, a bottom piece is where the Li-ion batteries 
reside, and a middle piece to mount the PCB on for stability as 
well as placement in the case. The case is held together by two 
screws at diagonal corners.  

As it is, this case is not IPX4 compliant or bacteria resistant. 
Our plan was to create a mold for the case so that we could 
make a food-grade silicone casing to cover it, but this 
unfortunately did not come to fruition due to time constraints 
and our inexperience in the area.  

C. Sky Unit 

    The Sky Unit is composed of the Atmel SAMR21G 
processor and Raspberry Pi 3 board [5]. The prototype for the 
complete unit is shown in Figure 5. For table localization, a 
Raspberry Pi NoIR camera module [6] is used as well as a lens 
that filters out the visible spectrum. This wall mounted unit 
operates from wall power. The Sky Unit functions as a central 
hub for all the Table Units, and as an intermediate link between 
the Table Units and the database/app. The SAMR21G board is 
used to communicate wirelessly with the Table Units via the 
Lightweight Mesh Protocol, as explained in the Table Unit 
section. The Raspberry Pi was chosen as the central processing 
system for the Sky Unit due to its power and versatility as a 
computer coupled with easy-to-use functionality and an 
abundance of available documentation. For our database needs, 
we ultimately decided upon Amazon Web Services (AWS) - 
which is discussed in more detail in Section II.D - and this 
influenced the functionality of our Pi. Python code using Boto 
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3, Amazon’s own SDK for Python [7], [8], is used on the Pi to 
communicate data between the Table Units and the database. 
Given the plentiful documentation for Boto 3 from AWS, as 
well as the convenient use of Python scripts aboard the Pi, this 
communication method proved to be the most efficient way of 
both writing to and reading from the database with the Pi. By 
utilizing the Lightweight Mesh and the Boto 3 SDK, we have 
successful communication between the Table Units and the 
database. 

 
    Alternatives for interfacing the Pi with the database were 
explored as per the database chosen; Boto 3 was our final choice 
as we settled on Amazon DynamoDB [9] with which Boto 3 is 
closely coupled, but a previous option was Amazon RDS [10] - 
the choice to switch databases is discussed in detail in the 
following section. 

We designed a communication protocol for seating 
information passed between the Sky Unit and Table Unit. To 
inform our design choice, we identified the information both 
units would need to receive in order to function properly: 
Table ID, Command Type, and Data. The resultant protocol is 
a 7 byte string, as shown in Table III. The first two bytes 
correspond to the Table ID, which is unique and is assigned to 
each table during system calibration. The next byte identifies 
whether the command being sent corresponds to the seat LEDs 
or the IR LEDs; this is only relevant for messages sent to the 
Table Unit and is ignored for messages sent to the Sky Unit. 
The last 4 bytes indicate whether the corresponding LED is to 
turn on or off. Possible values and their matching information 
are defined in Appendix A.  
 An example command sent from the Sky Unit to the Table 
unit would be “01 1 0 1 0 0.” This corresponds to a command 
sent to Table 1 (ID 01) to change the seat states (command 
byte 1) as indicated by the data bytes. This particular message 
would turn seat 2’s LED on (occupied) and seat 1, 3, and 4’s 
LEDs off (vacant). 
    To test this subsystem in terms of the Sky Unit’s ability to 
process and transmit data to and from the server, we used our 
protocol to send example data to the database from the 
Raspberry Pi. Our Python program automatically handles 
database connections and reading/writing through Boto 3. 
Incoming Table Unit messages are translated into the necessary 
DynamoDB format and the database is updated. In the same 
fashion, the database can be accessed readily and information 
can be read, translated into our protocol, and quickly sent to a 
Table Unit. To ensure accuracy and agreement between the 
database and the actual Table Unit states, conditional writing 
was also implemented. An “image” of the database is created 
locally on the Pi and is updated with every message that is sent. 
Any mismatches between the local image and the database are 
found and corrected.  

Our system should function as close to real time as possible 
so that both the phone app and the Table Units convey the same 
information to users at a given time. To ensure this functionality 
we utilized DynamoDB’s Stream application, which provides 
chronological records of database changes [9]. To efficiently 

process stream records, we used the abstraction layer Bloop 
[10]. With Bloop, our Python code could easily access and 
process stream records produced by AWS and propagate this 
information down to the Table Units in a timely manner.  

 
Fig 5. Sky Unit prototype used for Demo day. In practice, the unit would be 
mounted on the wall. 
 

The code also handles Table Localization during normal 
runtime through an interrupt-based system. Normal operation is 
interrupted periodically so that table locations may be acquired 
and updated if need be. This process is done infrequently to not 
disturb normal operation often and for extended periods of time.  
    Our system needs to determine the position and orientation 
of each Table Unit in the dining hall to provide an accurate 
mapping of the tables and seats on the mobile app. Without it, 
our system can tell the app user that a particular table and seat 
is open but not where the table is or which of the four seats are 
available. we wanted our system to have adaptability in case 
tables were moved, e.g., if patrons pushed two tables together 
to seat eight people. The criteria for our table localization 
system is as follows: 

 Tables identified within at least half a table length 
 Periodic updates every hour 
 Image processing does not disrupt entire system 

 Although we explored many options as discussed in length 
in our Mid-Semester report, the best choice for us was 
implementing an IR camera system where the camera on the 
Sky Unit takes pictures of the room and image processing is 
used to filter out the IR LEDs on the Table Units.  
    For our system to work, the camera undergoes a one-time 
calibration before dining hall operation begins. This is done by 
placing a Table Unit at four known locations in the dining hall 
at table height e.g. placing the unit at each corner of the room. 
The IR camera takes a picture of each location individually and 
then uses the same image processing for position and location 
to find each unit. Lastly, these new points are mapped to a 2D 
perspective, yielding a grid on which the units can be found. 
This is discussed in further detail in Appendix C. 
    For finding position, the Sky Unit sends three commands to 
one Table Unit to flash the IR LEDs two times, taking a picture 
in between each command i.e. obtaining three images depicting 
the LEDs on, LEDs off, then LEDs on. These images are then 
processed using OpenCV for Python [11], with information 

TABLE III 
PROTOCOL 

Address Command Data 
2 Bytes 1 Byte 4 Bytes 
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used from Adrian Rosebrock’s website, pyimagesearch to use 
the Raspberry Pi Camera with OpenCV [12].  
The image processing used a four-step process: 

 Filter image using a Gaussian Blur (to filter out noise), 
and a Binary Threshold to isolate pixels that are the 
same intensity as the IR LEDs (Fig 6) 

 Use a Blob Detection to isolate the IR LEDs on the 
first image (Fig 6). 

 Compare detected pixels to the other two images, and 
keep pixels that match pattern of ON-OFF-ON 
sequence 

 The remaining points are averaged, and the table 
center coordinates are sent to the database 

 

 
Fig 6. Top Left: Original capture of Table Unit with IR LEDs ON. Top Right: 
Filtering done on image. Bottom Middle: Blob Detection (denoted by the 
black dots) with the center of table marked by the white circle. 
 

This process is repeated for each Table Unit. As the 
database is updated, so is the rendering of the map on the 
mobile app.  
    Additionally, the Table Unit orientation is needed to 
determine which button and LED corresponds to which seat, 
since the Table Unit is not fixed to the table (for cleaning 
purposes). The Sky Unit finds orientation in a similar process 
to position. Instead of turning all four IR LEDs on at once, each 
IR LED is turned on one at a time. The camera captures an 
image for each LED and determines if the LED is found using 
the filtering and blob detection for position-finding. Based on 
the LEDs that the Sky Unit “sees”, the orientation can be found 
relative to Seat 1 i.e. the orientation is 0-degrees if Seat 1 can 
be seen. 

D. Database/Server 

    Our system features a set of databases, each of which stores 
table data corresponding to a specific dining hall. These 
databases are populated with information obtained from the Sky 
Unit regarding each Table Unit, as explained in the previous 
sections, corresponding to table layout and orientation, and 
seating occupancy status. Our app fetches data from the 
database corresponding to the user-selected dining hall and uses 
it to populate the app’s dining hall map and respond to user 
searches. To this end, we decided to use Amazon’s DynamoDB. 

DynamoDB is fast, flexible, and highly scalable NoSQL 
database hosted by Amazon Web Services. DynamoDB is fully 
integrated with the full suite of AWS services, including 
identity management, update streaming, and access security. 
The techniques needed to produce this part of our project were 
acquired both in coding classes and through work experience. 
A test of this part of our system would likely start with the basic 
CRUD functionality, then test conditional writing, simulating 
data mismatches, and then test the integration of the database 
with our greater system. If we can perform CRUD operations 
properly, detect data mismatches and correctly connect the parts 
of the system together, then the test will have passed. 
    Before using DynamoDB, Amazon RDS was also explored 
as a potential option, however it proved difficult to interact with 
in the way we needed. MySQL is available for simple Pi-
database interaction using RDS, but at the cost of security; to 
successfully interact with the database, a lot of the security 
authentications need to be removed. With DynamoDB, initially 
connecting to the database involved a bit more work but the 
overall process of interacting is simpler with respect to the Pi, 
and more secure in terms of the connection. This led us to 
choose DynamoDB for our project. 

E. Android App 

 
Fig 7. Screenshots of our Android app. Left: Users can select their dining hall. 
Middle: A map of tables and their occupancy is presented. Right: Results from 
user query based on party size. 
 

Our app is one half of the outward-facing part of our system. 
The app allows the user to select the dining hall they wish to 
interact with, to browse a seating map of the selected dining 
hall, to search the available tables by party size, to reserve and 
to re-reserve seats and tables, as shown in Figure 7. The 
Android Studio IDE and Java were utilized to write and build 
the app. A testing suite for this app would be used to initially 
test the user’s ability to select a dining hall, the app’s ability to 
update the table map based on database changes, the app’s 
ability to communicate with the Pi, and the app’s ability to 
search the table data by party size. Proper outcomes from these 
tests confirmed app functionality before integration with the 
rest of the system. 

III. PROJECT MANAGEMENT 

EfficienSeat was brought to reality through the effective 
communication and organization of our team. We continuously 
discussed each component as they pertained to the whole of the 
project, not just in terms of functionality but also higher-level 
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application, since this would be used heavily within a social 
setting; we wanted our system to make sense to users and staff. 
Weekly meetings with our advisor, Professor Wolf, helped keep 
us on track and able to prioritize the different components of 
our project. 

The project was neatly divided into four main components, 
as reflected in our block diagram, which we were able to divide 
up amongst our team. Though everyone had an assigned focus 
on different aspects of the project, there was great team 
involvement to help flesh out the most efficient approach and 
to ensure that everyone was consistently on the same page. 
Aarsh was our Table Unit expert, managing the innards 
including PCB design and circuitry linking the PCB, Atmel 
processor, and external periphery. He also coded the Atmel 
processors on both the Table and Sky Units. Matthew managed 
the Sky Unit, handling the main code ensuring database and 
Table Unit communication and message processing. Kristina 
developed our table localization method and helped integrate it 
with the main code on the Sky Unit. She also designed the CAD 
models for the Table Unit casing. Dennis handled phone app 
development and integration with the AWS server. As 
previously mentioned, each component had substantial input 
from the team to ensure that the best method to solve the 
problem and implement the solution was found and agreed 
upon. 

IV. CONCLUSION 

 
Our project functions as intended, allowing users to claim 

seats via the Table Units and reserve them via the phone app. 
Information is communicated reliably and quickly across the 
system. We did not yet ensure IPx4 compliance for our Table 
Units due to time constraints and inexperience in making 
silicone casings. 

Features that we wanted but were unable to get into the final 
version of our project include batch multi-reserving and full 
streaming capabilities. Currently, our app allows for users to 
reserve seats one at a time by hand or several at once through 
our search function. However, each of these reservations is 
done individually. Given enough time, we would have preferred 
a system where we could select seats to add to a reservation 
queue, which could be reserved or re-reserved as a batch. This 
would allow the user to more easily re-reserve his seats, as well 
as to make it easier to select and unselect seats before making a 
reservation. Currently, reserving several seats in a short stretch 
of time creates streaming records we cannot process on the Pi, 

causing delays, bugs, and/or crashes. If we had more time, we 
would have liked to implement database streaming on the app 
side and improved the robustness of all our streaming 
capabilities. To this end, I think choosing another database 
service would be wise if we intended to work on this project 
long-term.  

We would also like to redesign the booster circuit to 
minimize our power consumption. Due to not being able to test 
multiple designs of our PCB because of cost, our initial design 
had an unintended issue causing more power to be consumed 
than was initially planned.  

APPENDIX 

A. Communication Protocol Definitions 

Below are the definitions for each byte of our Table unit to Sky 
Unit communication protocol, as discussed in Section I.C. 

 

B. System Costs 

Below are the costs of the system per Table Unit and Sky 
Unit. 

 

C. Table Localization Calibration 

Concept for the table localization calibration process. 

 
Left: The paper represents the floor of a room and the black 
dots represent four known locations. These are detected with 
the image processing, as circled in red. Right: These points are 
then warped to a 2D perspective using a Perspective 
Transform in OpenCV. 
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FPR DELIVERABLES 

Deliverable Percent Complete 

Deployable Table Unit 
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100 

 



 7

guide our project. We would also like to thank Professors 
Patrick Kelly and Dennis Goeckel for taking the time to meet 
with us and discuss potential options for a part of our project. 
Special thanks to Shira Epstein and M5 for 3D printing 
resources. Dennis Donoghue would like to thank the creators 
and users of the website Stack Exchange for boundless advice 
and help. 

REFERENCES 
[1] "IP Rating Chart | DSMT.com," DSMT.com, 2018. [Online]. [Accessed 

2017]. 
[2] "ATSAMR21G18A - Wireless - Wireless Modules," Microchip.com, 

2018. [Online]. Available: 
http://www.microchip.com/wwwproducts/en/ATSAMR21G18A. 
[Accessed 2017]. 

[3] "IEEE 802.15.4-2015 - IEEE Standard for Low-Rate Wireless 
Networks," Standards.ieee.org, 2018. [Online]. Available: 
https://standards.ieee.org/findstds/standard/802.15.4-2015.html. 

[4] "Atmel Lightweight Mesh - Atmel Lightweight Mesh | Microchip 
Technology Inc.", Microchip.com, 2018. [Online]. Available: 
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?Part
NO=Atmel%20Lightweight%20Mesh. [Accessed: 2018]. 

[5] "Raspberry Pi 3 Model B," www.rs-components.com, 2018. [Online]. 
Available: http://docs-
europe.electrocomponents.com/webdocs/14ba/0900766b814ba5fd.pdf. 

[6] "Pi NoIR Camera V2 - Raspberry Pi," Raspberry Pi, 2018. [Online]. 
Available: https://www.raspberrypi.org/products/pi-noir-camera-v2/. 
[Accessed 2018]. 

[7] "boto/boto3 Repository," GitHub, 2018. [Online]. Available: 
https://github.com/boto/boto3. [Accessed 2018]. 

[8] "AWS SDK for Python," Amazon Web Services, Inc., 2018. [Online]. 
Available: https://aws.amazon.com/sdk-for-python/. 

[9] "Capturing Table Activity with DynamoDB Streams - Amazon 
DynamoDB", Docs.aws.amazon.com, 2018. [Online]. Available: 
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S
treams.html. [Accessed: 18]. 

[10] "Amazon DynamoDB Product Details - Amazon Web Services," 
Amazon Web Services, Inc., 2018. [Online]. Available: 
https://aws.amazon.com/dynamodb/details/. [Accessed 2017]. 

[11] "Amazon RDS Product Details - Amazon Web Services (AWS)," 
Amazon Web Services, Inc., 2018. [Online]. Available: 
https://aws.amazon.com/rds/details. [Accessed 2017]. 

[12] J. Cross, "Bloop: DynamoDB Modeling — bloop 1.0.0 documentation", 
Pythonhosted.org, 2018. [Online]. Available: 
https://pythonhosted.org/bloop/#. [Accessed 2018]. 

[13] "OpenCV-Python Tutorials — OpenCV-Python Tutorials 1 
documentation", Opencv-python-tutroals.readthedocs.io, 2018. [Online]. 
Available: http://opencv-python-
tutroals.readthedocs.io/en/stable/py_tutorials/py_tutorials.html. 
[Accessed: 2018]. 

[14] A. Rosebrock, "Accessing the Raspberry Pi Camera with OpenCV and 
Python - PyImageSearch", PyImageSearch, 2018. [Online]. Available: 
https://www.pyimagesearch.com/2015/03/30/accessing-the-raspberry-pi-
camera-with-opencv-and-python/. [Accessed: 2018]. 

 


