
D. Donoghue from Dover, Ma (e-mail: ddonoghue@umass.edu). K. Georgadarellis from Dartmouth, Ma (e-mail: kgeorgadarel@umass.edu).
M. Donnelly from Springfield, Ma (e-mail: matthewdonne@umass.edu). A. Jain from New Delhi, India (e-mail: aarshjain@umass.edu).

Abstract—The EfficienSeat system is proposed as a solution to

address problems and inefficiencies presented by overcrowded
dining halls. Through real time monitoring of individual seats via
sleek, LED based, modular units on every table, users walking
through the dining hall can easily ascertain seating occupancy at a
glance and claim their seats with ease. Further, these units will
ultimately communicate this information to users outside the
dining hall via a phone application in the form of a real time map,
giving a simple visual way to determine dining hall occupancy and
viable seating locations.

I. INTRODUCTION

INING halls on our campus suffer from problems in seating
that limit their overall efficiency. During busy times,
incoming patrons require info on available seating.

Without this information people travel up and down walkways
searching for a potential open seat. Larger parties face more
difficulty in finding seats. Patrons are then faced with the
equally unfavorable choices of using their limited time walking
throughout the entirety of the dining hall an unknown amount
of times until they find a seat or leaving and wasting the meal
swipe or money that they committed to enter the hall. This also
inhibits staff ability to quickly refill food and dishware
throughout the dining hall. These time delays, though
potentially minimal in single instances, add up and are
detrimental in a food service setting.
 We sought to design a system that would decrease these
frustrations and time delays and explored several methods of
implementation. A big factor was whether to use an active or
passive system. An active system completely controls where
patrons sit while a passive system reacts to where patrons
choose to sit. A completely active system would be akin to a
restaurant reservation system. This system would be good for
maximum seating efficiency but is not suitable for a dining hall
environment. Patrons would be averse to the idea of being told
where to sit, especially when the dining hall is relatively empty.
The sheer number of seats to manage in a dining hall also makes
this approach inefficient.
 On the opposite end of the spectrum we contemplated an
entirely passive system, one that indicates seat status based on
the seats at which people choose to sit. This system senses when
someone is sitting at a particular seat and then relays this
information to patrons inside and outside the dining hall. This
system is favorable because patrons will not have to do
anything new, however, it would be expensive and complex to
implement. Our solution was a hybrid of the two approaches.
With the hybrid system in mind, we then considered the specific
needs of our solution. The solution must improve time and
travel efficiency for patrons and staff. To do this, it must
accurately identify seating status and indicate this to incoming
patrons. It must also be simple to service without interrupting

the normal operation of the dining hall e.g. easy to install and
requiring infrequent maintenance. The only maintenance that
should be required would be battery replacement once a month
for individual monitoring units. The system should be IPX4 [1]
compliant to comply with food safety standards and to ensure
reliable operation.
 To satisfy these needs, the system will consist of nodes
situated on every table in the dining hall, all reporting to a
central hub. The nodes need to be small and self-sufficient in
terms of power; this coincides with the low maintenance
requirement, where routine recharging should be monthly.
Every node will be connected to a central hub, creating a
network that will reliably monitor the seating situation and
ultimately report this to the user via a phone application. Table
1 quantifies these requirements.

II. DESIGN

A. Overview

To solve this problem, we designed a network within a dining
hall that has real time monitoring of seat occupancy and
consistent reporting of this data to users. The data is accessible
to users both inside and outside of the dining hall. As shown in
the block diagram in Figure 1, this network consists of four
subsystems: 1) the nodes - dubbed ‘Table Units,’ 2) a ‘Sky
Unit,’ 3) a database, and 4) a phone application. The purpose of
each subsystem and the interaction between them is outlined in
the overview, with more detailed descriptions provided in the
following sections.

Team 26: EfficienSeat

Dennis Donoghue, CSE, Matthew Donnelly, EE, Kristina Georgadarellis EE, and Aarsh Jain, EE

D
TABLE I

REQUIREMENTS AND SPECIFICATIONS

Requirement Specification

Table search functionality Users can search for available seats
by party size through a mobile app

App users will receive timely
graphical response

Updated map displayed within 2
seconds

App users can find their
tables from the map on the
mobile app

Table locations will be accurate to ½
a table length

System can manage entire
dining hall

Can support > 100 seats

Table unit is splash-proof and
safe for use in a dining hall

Table unit is compliant with IPX4

System can accommodate
non-app users

Patrons can claim seats by pressing a
button on the Table Unit

Infrequent maintenance Monthly battery replacement

 2

Fig 1. Block diagram of our system. There are four main blocks that make up
our system: The Table Unit, Sky Unit, Database Server, and Android App.

Patrons of the dining hall, the users of our system, interact
with it from two points: the phone application and the Table
Units. Table Units populates the dining hall as compact units,
one per table of four seats. These units provide the first point of
user interaction within the dining hall: users claim seats by
pressing a button, and the LEDs on the unit indicate seat status,
providing a simple method of identifying occupancy at a
glance. By having an easy-to-interpret system to claim seats,
the issue of patrons marking their spots with valuable items like
phones or keys is eliminated and seat status will be clearly
marked via the LEDs, eliminating the ambiguity of a stray coat
or left behind dishware.

Seat status is reported from each Table Unit to the Sky Unit,
the central hub of the network. As the hub, it processes the
Table Unit data and functions as the medium of communication
between the Table Units and the database/app side of the
system. Alongside this, the Sky Unit will also perform table
localization; this information is used to accurately report seat
status to users via the app.

From the Sky Unit, seat statuses are sent to the database. The
database is constantly updated in real-time by both the Sky Unit
and the phone app so that it contains up-to-date information of
all seats within the dining hall.

The phone application provides the other point of user
interaction with our system from outside of the dining hall.
Namely, users can view a map of the dining hall with table
occupancy, search for available seats by party size, and reserve
seats, all from the convenience of their phone. The map of the
dining hall is generated using information queried from the
database for table occupancy and the localization data for the
position of each table within the dining hall. With a basic
outline of the system’s functionality and interactions
established, the following sections delve into each subsystem
more, discussing design choices and alternatives, protocols, and
component interactions.

B. Table Unit

The Table Unit is a small modular unit for user interaction at
the table itself containing a visual LED and button pair for each
of the table’s four seats (See Figure 2). It also contains four IR
LEDs, which will be discussed later regarding table
localization. The visual LEDs are used to indicate the status of

the seats to the user, namely whether the seat is taken or not.
The buttons are used to confirm seat reservations made from the
app and to occupy and vacate seats without the app.

Fig 2. Picture of the final Table Unit Design. There are four LED push
buttons on each side and four IR LEDs on each corner. The front panel
houses the ON/OFF switch and microUSB port for charging.

These components are integrated with a battery power supply
and the Atmel SAMR21G board by our custom PCB, which
will be discussed below. The following table shows the seat
state corresponding to the LED responses:

 The following bullets guided us on selecting the processor to
be used on the Table Unit:

 The processor needs to support a wireless network
with low bandwidth and energy.

 The processor shall be able to handle at least hundred
nodes on a network.

 It should be low powered to keep the maintenance of
the unit to a minimum.

 Needs to also take input from four buttons and output
to eight LEDs.

The SAMR21 microcontroller [2] by Microchip Technology
Inc. seemed to be the right choice. The microcontroller has a
System on Chip to connect the Table Unit to a network based
on IEEE 802.15.4 communication protocol [3]. This is a low
bandwidth network protocol due to reduced power
requirements to run the network. The Lightweight Mesh
protocol provided by Microchip is well supported for this
microcontroller [4]. Some of its features are:

 Network management of more than sixty-five
thousand nodes.

 Queuing of incoming packets.
 Callbacks to confirm data received.

TABLE II
TABLE UNIT CHAIR STATES

Chair State LED Response

Vacant OFF
Occupied ON

Reserved Flashing
About to Expire Flashing

 3

 The project started with a few example codes in Atmel Studio
Framework to better understand the overall code that would
govern operation of the Table Unit. Simple network
communication was established between two SAMR21 boards
via their built-in RF antennas. The range of communication was
established to be beyond 50 feet through testing with a wall
barrier, this range is more than enough to communicate to any
corner of a dining common from its center. Further testing was
done including button debouncing optimization to give a
smoother interface for the user. Typical Table Unit operation
was tested using a default set of commands including the
following responses:

 Button press shall toggle states between vacant and
occupied.

 Message received from Sky Unit shall be processed
and signified on LEDs.

 Reserved state shall go to occupied when button is
pressed.

 Timer state shall give a pulse on the corresponding
LED.

 Data shall be sent when a button is pressed at the Table
Unit which should be properly received at the
coordinator in Sky Unit.

Fig 3. CAD Layout of the custom-built PCB. The board was built using the
services provided by OSH Park and soldered using SDP soldering equipment.

The Table Unit uses a custom-built PCB to accommodate a
few extra features for robustness, utility and ease of use for both
the user and dining hall staff. The features included in the
custom PCB are as follows:

 Booster circuit - supports up to four Panasonic Model
18650 batteries; total capacity = 13600 mAh.

 Charging circuit - charges the batteries at 500 mA with
a status LED. The charging can be done using any
standard micro USB type B port.

 Main switch to turn units off if not used, reducing the
current to less than 10 µA.

 GPIO connections to breakout SAMR21 Xplained pro
board to precisely fit IR-LEDs and buttons onto the
case with their respective resistances.

In addition, the PCB stands as the main frame to hold the
Xplained pro board with nylon standoffs. A second set of drills
enable the board to easily fit with the custom-built case. All
GPIO pins use standard double row male pin heads for
maximum compatibility and easy swap of components.

Fig 4. CAD model of the Table Unit case. The unit was designed in Autodesk
Fusion 360 and 3D printed at M5 using both ABS and PLA.

The PCB, SAMR21 board, and batteries are housed inside
the Table Unit case. The case was designed in Autodesk
Fusion 360 and 3D printed at M5 using both ABS and PLA. In
practice, these units would be made from a more durable and
smooth material like acrylic or nylon. The table unit has three
parts, a top piece for mounting the push buttons and IR LEDs,
as well as providing access to the microUSB port and
ON/OFF switch, a bottom piece is where the Li-ion batteries
reside, and a middle piece to mount the PCB on for stability as
well as placement in the case. The case is held together by two
screws at diagonal corners.

As it is, this case is not IPX4 compliant or bacteria resistant.
Our plan was to create a mold for the case so that we could
make a food-grade silicone casing to cover it, but this
unfortunately did not come to fruition due to time constraints
and our inexperience in the area.

C. Sky Unit

 The Sky Unit is composed of the Atmel SAMR21G
processor and Raspberry Pi 3 board [5]. The prototype for the
complete unit is shown in Figure 5. For table localization, a
Raspberry Pi NoIR camera module [6] is used as well as a lens
that filters out the visible spectrum. This wall mounted unit
operates from wall power. The Sky Unit functions as a central
hub for all the Table Units, and as an intermediate link between
the Table Units and the database/app. The SAMR21G board is
used to communicate wirelessly with the Table Units via the
Lightweight Mesh Protocol, as explained in the Table Unit
section. The Raspberry Pi was chosen as the central processing
system for the Sky Unit due to its power and versatility as a
computer coupled with easy-to-use functionality and an
abundance of available documentation. For our database needs,
we ultimately decided upon Amazon Web Services (AWS) -
which is discussed in more detail in Section II.D - and this
influenced the functionality of our Pi. Python code using Boto

 4

3, Amazon’s own SDK for Python [7], [8], is used on the Pi to
communicate data between the Table Units and the database.
Given the plentiful documentation for Boto 3 from AWS, as
well as the convenient use of Python scripts aboard the Pi, this
communication method proved to be the most efficient way of
both writing to and reading from the database with the Pi. By
utilizing the Lightweight Mesh and the Boto 3 SDK, we have
successful communication between the Table Units and the
database.

 Alternatives for interfacing the Pi with the database were
explored as per the database chosen; Boto 3 was our final choice
as we settled on Amazon DynamoDB [9] with which Boto 3 is
closely coupled, but a previous option was Amazon RDS [10] -
the choice to switch databases is discussed in detail in the
following section.

We designed a communication protocol for seating
information passed between the Sky Unit and Table Unit. To
inform our design choice, we identified the information both
units would need to receive in order to function properly:
Table ID, Command Type, and Data. The resultant protocol is
a 7 byte string, as shown in Table III. The first two bytes
correspond to the Table ID, which is unique and is assigned to
each table during system calibration. The next byte identifies
whether the command being sent corresponds to the seat LEDs
or the IR LEDs; this is only relevant for messages sent to the
Table Unit and is ignored for messages sent to the Sky Unit.
The last 4 bytes indicate whether the corresponding LED is to
turn on or off. Possible values and their matching information
are defined in Appendix A.
 An example command sent from the Sky Unit to the Table
unit would be “01 1 0 1 0 0.” This corresponds to a command
sent to Table 1 (ID 01) to change the seat states (command
byte 1) as indicated by the data bytes. This particular message
would turn seat 2’s LED on (occupied) and seat 1, 3, and 4’s
LEDs off (vacant).
 To test this subsystem in terms of the Sky Unit’s ability to
process and transmit data to and from the server, we used our
protocol to send example data to the database from the
Raspberry Pi. Our Python program automatically handles
database connections and reading/writing through Boto 3.
Incoming Table Unit messages are translated into the necessary
DynamoDB format and the database is updated. In the same
fashion, the database can be accessed readily and information
can be read, translated into our protocol, and quickly sent to a
Table Unit. To ensure accuracy and agreement between the
database and the actual Table Unit states, conditional writing
was also implemented. An “image” of the database is created
locally on the Pi and is updated with every message that is sent.
Any mismatches between the local image and the database are
found and corrected.

Our system should function as close to real time as possible
so that both the phone app and the Table Units convey the same
information to users at a given time. To ensure this functionality
we utilized DynamoDB’s Stream application, which provides
chronological records of database changes [9]. To efficiently

process stream records, we used the abstraction layer Bloop
[10]. With Bloop, our Python code could easily access and
process stream records produced by AWS and propagate this
information down to the Table Units in a timely manner.

Fig 5. Sky Unit prototype used for Demo day. In practice, the unit would be
mounted on the wall.

The code also handles Table Localization during normal
runtime through an interrupt-based system. Normal operation is
interrupted periodically so that table locations may be acquired
and updated if need be. This process is done infrequently to not
disturb normal operation often and for extended periods of time.
 Our system needs to determine the position and orientation
of each Table Unit in the dining hall to provide an accurate
mapping of the tables and seats on the mobile app. Without it,
our system can tell the app user that a particular table and seat
is open but not where the table is or which of the four seats are
available. we wanted our system to have adaptability in case
tables were moved, e.g., if patrons pushed two tables together
to seat eight people. The criteria for our table localization
system is as follows:

 Tables identified within at least half a table length
 Periodic updates every hour
 Image processing does not disrupt entire system

 Although we explored many options as discussed in length
in our Mid-Semester report, the best choice for us was
implementing an IR camera system where the camera on the
Sky Unit takes pictures of the room and image processing is
used to filter out the IR LEDs on the Table Units.
 For our system to work, the camera undergoes a one-time
calibration before dining hall operation begins. This is done by
placing a Table Unit at four known locations in the dining hall
at table height e.g. placing the unit at each corner of the room.
The IR camera takes a picture of each location individually and
then uses the same image processing for position and location
to find each unit. Lastly, these new points are mapped to a 2D
perspective, yielding a grid on which the units can be found.
This is discussed in further detail in Appendix C.
 For finding position, the Sky Unit sends three commands to
one Table Unit to flash the IR LEDs two times, taking a picture
in between each command i.e. obtaining three images depicting
the LEDs on, LEDs off, then LEDs on. These images are then
processed using OpenCV for Python [11], with information

TABLE III
PROTOCOL

Address Command Data
2 Bytes 1 Byte 4 Bytes

 5

used from Adrian Rosebrock’s website, pyimagesearch to use
the Raspberry Pi Camera with OpenCV [12].
The image processing used a four-step process:

 Filter image using a Gaussian Blur (to filter out noise),
and a Binary Threshold to isolate pixels that are the
same intensity as the IR LEDs (Fig 6)

 Use a Blob Detection to isolate the IR LEDs on the
first image (Fig 6).

 Compare detected pixels to the other two images, and
keep pixels that match pattern of ON-OFF-ON
sequence

 The remaining points are averaged, and the table
center coordinates are sent to the database

Fig 6. Top Left: Original capture of Table Unit with IR LEDs ON. Top Right:
Filtering done on image. Bottom Middle: Blob Detection (denoted by the
black dots) with the center of table marked by the white circle.

This process is repeated for each Table Unit. As the
database is updated, so is the rendering of the map on the
mobile app.
 Additionally, the Table Unit orientation is needed to
determine which button and LED corresponds to which seat,
since the Table Unit is not fixed to the table (for cleaning
purposes). The Sky Unit finds orientation in a similar process
to position. Instead of turning all four IR LEDs on at once, each
IR LED is turned on one at a time. The camera captures an
image for each LED and determines if the LED is found using
the filtering and blob detection for position-finding. Based on
the LEDs that the Sky Unit “sees”, the orientation can be found
relative to Seat 1 i.e. the orientation is 0-degrees if Seat 1 can
be seen.

D. Database/Server

 Our system features a set of databases, each of which stores
table data corresponding to a specific dining hall. These
databases are populated with information obtained from the Sky
Unit regarding each Table Unit, as explained in the previous
sections, corresponding to table layout and orientation, and
seating occupancy status. Our app fetches data from the
database corresponding to the user-selected dining hall and uses
it to populate the app’s dining hall map and respond to user
searches. To this end, we decided to use Amazon’s DynamoDB.

DynamoDB is fast, flexible, and highly scalable NoSQL
database hosted by Amazon Web Services. DynamoDB is fully
integrated with the full suite of AWS services, including
identity management, update streaming, and access security.
The techniques needed to produce this part of our project were
acquired both in coding classes and through work experience.
A test of this part of our system would likely start with the basic
CRUD functionality, then test conditional writing, simulating
data mismatches, and then test the integration of the database
with our greater system. If we can perform CRUD operations
properly, detect data mismatches and correctly connect the parts
of the system together, then the test will have passed.
 Before using DynamoDB, Amazon RDS was also explored
as a potential option, however it proved difficult to interact with
in the way we needed. MySQL is available for simple Pi-
database interaction using RDS, but at the cost of security; to
successfully interact with the database, a lot of the security
authentications need to be removed. With DynamoDB, initially
connecting to the database involved a bit more work but the
overall process of interacting is simpler with respect to the Pi,
and more secure in terms of the connection. This led us to
choose DynamoDB for our project.

E. Android App

Fig 7. Screenshots of our Android app. Left: Users can select their dining hall.
Middle: A map of tables and their occupancy is presented. Right: Results from
user query based on party size.

Our app is one half of the outward-facing part of our system.
The app allows the user to select the dining hall they wish to
interact with, to browse a seating map of the selected dining
hall, to search the available tables by party size, to reserve and
to re-reserve seats and tables, as shown in Figure 7. The
Android Studio IDE and Java were utilized to write and build
the app. A testing suite for this app would be used to initially
test the user’s ability to select a dining hall, the app’s ability to
update the table map based on database changes, the app’s
ability to communicate with the Pi, and the app’s ability to
search the table data by party size. Proper outcomes from these
tests confirmed app functionality before integration with the
rest of the system.

III. PROJECT MANAGEMENT

EfficienSeat was brought to reality through the effective
communication and organization of our team. We continuously
discussed each component as they pertained to the whole of the
project, not just in terms of functionality but also higher-level

 6

application, since this would be used heavily within a social
setting; we wanted our system to make sense to users and staff.
Weekly meetings with our advisor, Professor Wolf, helped keep
us on track and able to prioritize the different components of
our project.

The project was neatly divided into four main components,
as reflected in our block diagram, which we were able to divide
up amongst our team. Though everyone had an assigned focus
on different aspects of the project, there was great team
involvement to help flesh out the most efficient approach and
to ensure that everyone was consistently on the same page.
Aarsh was our Table Unit expert, managing the innards
including PCB design and circuitry linking the PCB, Atmel
processor, and external periphery. He also coded the Atmel
processors on both the Table and Sky Units. Matthew managed
the Sky Unit, handling the main code ensuring database and
Table Unit communication and message processing. Kristina
developed our table localization method and helped integrate it
with the main code on the Sky Unit. She also designed the CAD
models for the Table Unit casing. Dennis handled phone app
development and integration with the AWS server. As
previously mentioned, each component had substantial input
from the team to ensure that the best method to solve the
problem and implement the solution was found and agreed
upon.

IV. CONCLUSION

Our project functions as intended, allowing users to claim

seats via the Table Units and reserve them via the phone app.
Information is communicated reliably and quickly across the
system. We did not yet ensure IPx4 compliance for our Table
Units due to time constraints and inexperience in making
silicone casings.

Features that we wanted but were unable to get into the final
version of our project include batch multi-reserving and full
streaming capabilities. Currently, our app allows for users to
reserve seats one at a time by hand or several at once through
our search function. However, each of these reservations is
done individually. Given enough time, we would have preferred
a system where we could select seats to add to a reservation
queue, which could be reserved or re-reserved as a batch. This
would allow the user to more easily re-reserve his seats, as well
as to make it easier to select and unselect seats before making a
reservation. Currently, reserving several seats in a short stretch
of time creates streaming records we cannot process on the Pi,

causing delays, bugs, and/or crashes. If we had more time, we
would have liked to implement database streaming on the app
side and improved the robustness of all our streaming
capabilities. To this end, I think choosing another database
service would be wise if we intended to work on this project
long-term.

We would also like to redesign the booster circuit to
minimize our power consumption. Due to not being able to test
multiple designs of our PCB because of cost, our initial design
had an unintended issue causing more power to be consumed
than was initially planned.

APPENDIX

A. Communication Protocol Definitions

Below are the definitions for each byte of our Table unit to Sky
Unit communication protocol, as discussed in Section I.C.

B. System Costs

Below are the costs of the system per Table Unit and Sky
Unit.

C. Table Localization Calibration

Concept for the table localization calibration process.

Left: The paper represents the floor of a room and the black
dots represent four known locations. These are detected with
the image processing, as circled in red. Right: These points are
then warped to a 2D perspective using a Perspective
Transform in OpenCV.

ACKNOWLEDGMENT

We would like to thank our advisor Professor Tilman Wolf
and evaluators Professors Eric Polizzi and Csaba Moritz for
their very useful critiques and insightful advice that helped

TABLE IV
FPR DELIVERABLES

Deliverable Percent Complete

Deployable Table Unit
 Case, PCB built and fully integrated
 Case protects from food/spills

80

Demonstrate Table Localization ability
 Improve algorithm for large scale

implementation

100

Complete and robust system operation
 All parts fully integrated
 Complete user App experience
 Reservation/claim timers

implemented

100

 7

guide our project. We would also like to thank Professors
Patrick Kelly and Dennis Goeckel for taking the time to meet
with us and discuss potential options for a part of our project.
Special thanks to Shira Epstein and M5 for 3D printing
resources. Dennis Donoghue would like to thank the creators
and users of the website Stack Exchange for boundless advice
and help.

REFERENCES
[1] "IP Rating Chart | DSMT.com," DSMT.com, 2018. [Online]. [Accessed

2017].
[2] "ATSAMR21G18A - Wireless - Wireless Modules," Microchip.com,

2018. [Online]. Available:
http://www.microchip.com/wwwproducts/en/ATSAMR21G18A.
[Accessed 2017].

[3] "IEEE 802.15.4-2015 - IEEE Standard for Low-Rate Wireless
Networks," Standards.ieee.org, 2018. [Online]. Available:
https://standards.ieee.org/findstds/standard/802.15.4-2015.html.

[4] "Atmel Lightweight Mesh - Atmel Lightweight Mesh | Microchip
Technology Inc.", Microchip.com, 2018. [Online]. Available:
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?Part
NO=Atmel%20Lightweight%20Mesh. [Accessed: 2018].

[5] "Raspberry Pi 3 Model B," www.rs-components.com, 2018. [Online].
Available: http://docs-
europe.electrocomponents.com/webdocs/14ba/0900766b814ba5fd.pdf.

[6] "Pi NoIR Camera V2 - Raspberry Pi," Raspberry Pi, 2018. [Online].
Available: https://www.raspberrypi.org/products/pi-noir-camera-v2/.
[Accessed 2018].

[7] "boto/boto3 Repository," GitHub, 2018. [Online]. Available:
https://github.com/boto/boto3. [Accessed 2018].

[8] "AWS SDK for Python," Amazon Web Services, Inc., 2018. [Online].
Available: https://aws.amazon.com/sdk-for-python/.

[9] "Capturing Table Activity with DynamoDB Streams - Amazon
DynamoDB", Docs.aws.amazon.com, 2018. [Online]. Available:
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S
treams.html. [Accessed: 18].

[10] "Amazon DynamoDB Product Details - Amazon Web Services,"
Amazon Web Services, Inc., 2018. [Online]. Available:
https://aws.amazon.com/dynamodb/details/. [Accessed 2017].

[11] "Amazon RDS Product Details - Amazon Web Services (AWS),"
Amazon Web Services, Inc., 2018. [Online]. Available:
https://aws.amazon.com/rds/details. [Accessed 2017].

[12] J. Cross, "Bloop: DynamoDB Modeling — bloop 1.0.0 documentation",
Pythonhosted.org, 2018. [Online]. Available:
https://pythonhosted.org/bloop/#. [Accessed 2018].

[13] "OpenCV-Python Tutorials — OpenCV-Python Tutorials 1
documentation", Opencv-python-tutroals.readthedocs.io, 2018. [Online].
Available: http://opencv-python-
tutroals.readthedocs.io/en/stable/py_tutorials/py_tutorials.html.
[Accessed: 2018].

[14] A. Rosebrock, "Accessing the Raspberry Pi Camera with OpenCV and
Python - PyImageSearch", PyImageSearch, 2018. [Online]. Available:
https://www.pyimagesearch.com/2015/03/30/accessing-the-raspberry-pi-
camera-with-opencv-and-python/. [Accessed: 2018].

