

IoTECH
Internet of Things Extensible Car Hub

Nigel S. Paine, CSE; Raghid Bahnam, EE; Nicholas A. Korniyenko, EE; Christopher R. Ingerson, CSE

Abstract — “IoTECH”, also known as the Internet of
Things Extensible Car Hub, is an IoT device that
interfaces with the OBD-II diagnostics port and a
variety of external sensors. In an era of WiFi-enabled
devices, we seek to implement a device that is unique to
automotive systems. This system will allow the user to
create an application that will interface with an array
of sensors and communicate serially or wirelessly via
Bluetooth, WiFi, and 3G data. User data is transmitted
via 3G to a web server where notifications are then
broadcast. A sample application being implemented
with IoTECH is a “TempAlert” system which notifies a
user if there is a person in the car and a certain
temperature threshold is reached.

I. INTRODUCTION

We see more IoT devices integrated into homes across the
country, but there aren’t such devices out there for
automotive applications. Nest thermostat and Hue Philips
Light Bulbs are examples of IoT devices. Both are app
controllable where prefered lighting and temperature can
be controlled via app. Nest can be programmed to set the
temperature when the user comes home where Hue can
change each light bulb to a prefered color and brightness
[21][22]. Existing automotive IoT devices are limited to
the space underneath the steering column where the
devices plug into the OBD-II port [13][14][15]. These
devices may have a variety of sensors but are limited to
being under the steering column. For example, a device is
able to give GPS coordinates but not give a picture of a
breakin, or detect motion of an endangered child due to
temperature. What we plan to create is a “smart hub”
which will be directly connected to a vehicle’s OBD-II
port but is also extended with sensors to produce many
more different applications that can’t be done under the
steering column. This includes infrared sensing and picture
taking done by this extension. This IoT device would be
both extensible and modular, capable of integrating with
most sensors via a hardwired or wireless connection. One
of the main goals of this device is to receive live-updated
information directly to the user’s phone, whether it is
getting temperature alerts or notifying the user if the car
has been hit. We hope to extend the usability of the
OBD-II port beyond its current capabilities using our

technology. Our device could save lives of children left by
their parents in hot cars, catch thieves red handed, report
that your car got hit, and so on forth. It will make this
country safer. The applications can be limitless. We want
this device like home IoT devices to be extended not only
to a few applications and sensors but to maybe hundreds to
suit each person’s needs. Table 1 shows the hardware
specifications for our Hub and Extension.

Requirement Specification

Small/Portable
Hub size of a phone
(2.5”x2.5”x2.5”) w/

extension (5”x2.5”x3”)

Lightweight

Be able to drive car without
device falling down and

damaging diagnostics port
(hub <100g & extension

<200g)

Extensible
Supports Serial, WiFi,

Bluetooth, and 3G
communications

No lag communication Notification Delay < 1 min

Long-lasting car battery life Lasts 160-200hrs (~1 week)

Long-lasting extension
battery life

Lasts > 12hrs.

Table 1. System Specifications

2

II. DESIGN

Fig. 1. IoTECH Signals Block Diagram

Fig. 2. IoTECH Power Block Diagram

A. IoTECH Hub

The most important part of the design in Figure 1 is the
main hub. For our hub, we are using the Particle Electron
[24] as the main device. The main goal of our hub is to
request data from the OBD-II port and extension and use
the data from the OBD-II port, extension, and its own
external sensors in order to run a set of designed
applications.

The OBD-II port provides crucial diagnostic information
about the current status of the car, and also provides
constant power for the Electron. It supplies 12 volts, which
can be fed directly into the V​in pin of the Electron. The
Electron has a built-in voltage regulator that can take an
input of up to 18 volts and converts it to the 5 volts
necessary to run the Electron. More information about the

power supplied by the OBD-II port will be provided in
later sections.

Attached to the Electron, we will have a Bluetooth
module [25] that is able to accept communications from
the IoTECH Extension; the extension will be explained in
the next section. The data received by the module will be
transmitted to the Electron via the TX/RX pins, where the
data can be stored in variables and used in applications.

Currently, we only have one sensor on the main hub,
measuring the temperature and humidity of the ambient
environment inside the car. The purpose of this is to make
sure that any young children or animals left in the car,
whether intentionally or accidentally are not in any danger
as temperatures rise in the summer. All of the variables are
processed in the firmware of the Electron, and once an
application evaluates to true, an event is published to the
cloud via 3G. Communication with the server and the
integration of If This Then That [26] will be discussed
later.

B. IoTECH Extension

The next biggest component in the IoTECH device, and
more of a proof-of-concept than anything is the IoTECH
“Extension”. The extension’s role is to “extend” the
functionality of the main smart hub and allow users to
interface with external sensors via Bluetooth (LE) and
WiFi (802.11 b/g/n) connectivity [4]. This device is
powered by a 3.7V Lithium Polymer (LiPo) battery [17]
and holds any sensors that require better location
placement in the car (i.e. not under the dashboard). The
LiPo battery is boosted to 5V with a step-up voltage
regulator [18] to support powering any sensors relying on a
5V input.

The main processing unit on the extension is the
RedBear Duo [4] with Bluetooth/WiFi capabilities and
firmware supporting the Redbear API in addition to many
of the libraries from the Particle and Arduino APIs [8].
The main programming development environment being
used to upload code to the board is the Arduino IDE [19].

The first main sensor used on the extension is the
wide-angle camera. The camera we chose is the LinkSprite
JPEG Serial UART Infrared camera. This camera can have
a variable resolution but has a default resolution of
160x120 with night vision enabled by infrared LEDs and
up to 120 degree field of view [9]. Serial communication is
enabled by connecting the camera to the RedBear Duo’s
serial pins (pin D16 and D17 or the RX/TX pins as seen in
Figure 3 with the Redbear pinout map). The given Arduino
code is not readily

3

Fig. 3. RedBear Duo Pinout

compatible with the Redbear Duo due to hardware
limitations so changes in the code have to be implemented
to make sure that when serial data is sent over to the
Redbear device, the data buffer does not overflow, in
addition to the baud rates being set accordingly to avoid
data errors. Camera picture data is sent as a stream of hex
values formatted in JPEG format.

The second sensor being implemented on the extension
is the HC-SR501 passive infrared (PIR) motion sensor.
This sensor will be able to communicate in parallel with
the camera so that when motion is triggered, the camera
turns on and snaps a picture of the car’s interior. The delay
on the motion sensor can be set directly on the device
(ranging from 0.3 seconds to 5 minutes) or via software.
The motion sensor also has an angle of view of up to 110
degrees and up to 7 meters away [10].

With the motion sensor and camera, the “TempAlert”
system can be implemented more robustly, allowing the
user to only get notifications when there is motion detected
in the car in addition to receiving a low-resolution picture
(to avoid high 3G data consumption) identifying who or
what is in the car. TempAlert is a proof-of-concept
application developed by our team incorporating IoTECH
allowing the user to receive notifications if the internal
temperature exceeds a set threshold while also detecting
motion and capturing an image to ID false positives.

All hardware components are being tested via the
Arduino serial monitor [20] to validate that the correct data
is being sent/received. The serial monitor echoes data via
the USB-connected Redbear Duo. Data tests will also be
run in parallel with the smart hub on the Particle Electron
microcontroller to validate that data is being sent via
Bluetooth and WiFi in a secure and consistent manner.

C. OBD-II Communication

Fig. 4. OBD-II Pinout [6]

​Reading OBD-II was done in few stages. OBDII uses

three protocols to communicates with the outside word.
Since 2008, one protocol was mandated in every small size
car in the USA. It is known as the CAN protocol [23].
With speed up to 1 mbps, it is the fasted protocol that
OBDII uses. IoTech works only with cars that uses CAN
protocol. Before being able to read any data, the 12V of
the car’s battery needed to be regulated to 5V and 3.3V to
provide the required voltage that the system needs to
operate. This was done by using L7805C that regulated the
voltage down to 5V. That 5 V was then further regulated
down to 3.3V using LE33.

Fig. 5. Voltage regulator for the car battery

The system responsible of reading the data consists of

three subsystems. They are: a differential subsystem, an
interrupter subsystem, and finally the host. CAN bus is a
two lines communication. It consists of CAN-H and
CAN-L. The first subsystem is a differential chip known as
MCP2551. It takes the difference between CAN-H and
CAN-L and produce one single. That single is then sent to

4

the second subsystem, The Interrupter. The interrupter is
STN1110. It is the world’s smallest, lowest cost
multiprotocol OBD-II to UART interpreter IC. It has the
capability to interpret any protocol to universal
asynchronous receiver-transmitter (UART). This is
illustrated in fig 6 below. STN1110 provides an easy
means of accessing vehicle data, including diagnostic
trouble codes, MIL status, VIN, Inspection and
Maintenance (I/M) information, In-use Performance
Tracking (IPT), and hundreds of real-time parameters. ​for
the ELM327 command set, while outperforming the
original ELM327 IC in every category: stability,
performance, and features. ​Finally, the interrupter is
connected to the host through RX, TX ports.

Fig. 6. OBD II system

The system is a message-based protocol. The user request
specific information for the interrupter by sending a
request of HEX values. The Host will then receive a
message that has the requested information. OBD-II
provides many modes. For now, we are only interested in
live data. That is mode 01. Every request starts with 01 to
indicate the request for live data. That 01 is then followed
by the parameter value. After requesting a specific
parameter. OBD-II will respond with another HEX value.
That value start with 41 to indicate that it is live. The
follow is values that can be translated to real life data using
provided equations.
 To have a proof of concept, different data was obtained
from the car. Speed, RPM, Ambient temperature, and
coolant temperature were some of the parameters obtained
from the car. Table 2 shows data obtained by requesting
specific parameters. The society of Automotive Engineers
(SAE) provides equations to translate the data obtained to
real live results.

Table 2. Data Requested and Received from OBD-II

D. Server Communication

Stable connection to a server is a very crucial aspect of
the functionality of this project. The hub communicates
with the Particle Cloud server using UDP (User Datagram
Protocol), which saves a lot of data, as well as power. By
not constantly requiring handshakes in order to keep the
connection between the hub and cloud active, users are
able to conserve their data and make sure that they have
available data for when they need it. Acknowledgements
are manually required when meaningful data is pushed,
however, to ensure that the triggers are received.

When an event is published, a trigger is executed by
IFTTT. If This Then That is a free service that can be
integrated with Particle systems. In the case of our
“TempAlert” application, the service will execute when the
necessary prerequisites are met; the temperature is too hot,
and movement is detected in the car. When our trigger is
executed, users will receive a text message notifying them
that their pet or child is in danger.

E. Power Distribution Systems

Our power distribution system is distributed into two
different systems as specified earlier; the Hub and the
Extension. These two systems can be seen in the block
diagram in Figure 2. Each of these systems run off a
different power supply and are vital in running our system.

The Hub is where a lot of our main electronics are
located that have sensors on them as well as the
microprocessor that sends data via 3G. Its power source is
the pin 16 located on the OBD-II port, this pin is what
powers the OBD-II devices used to get codes needed for
diagnostics. Pin 4 is the chassis ground and pin 5 is the
signal ground. This gets its power from the battery of the
car which gets recharged when the car is on using an
alternator. The voltage on this pin can change and be
different at different times. This matters on how the
alternator charges the battery and how much the battery
can hold charge for [6].

5

 Fig. 7. Experimental Data for Car Battery Voltage Over

Time

Figure 7 shows this very well; the pin starts a little less
than 13 volts, as the car gets ignited it drops down to about
7 volts but then increases to 14.7 volts. This of course may
be different for different vehicles. Another factor to
consider is the temperature. As the temperature becomes
smaller the battery’s voltage falls 0.01 volts every 10
degrees Fahrenheit [5].

The Hub consists of three switching voltage regulators.
One located on the hub that is used on the electron
microcontroller that has a 3v3 pin that can output 800mA.
The model name for it is called the TPS62291 which
outputs 1 Amp, can take in 2.3-6 volts, output 3.3 volts,
and is 96% efficient [1]. It is used as a pull up for the
temperature sensor. The two other voltage regulators that
are being used are a 5V and another 3.3V regulator. The
5V is used for some of the OBD-2 circuitry, and the 3.3 V
is used for the Bluetooth/Wi-Fi Redbear duo,
microcontroller, temperature sensor, as well as some of the
OBD-II circuitry. The D24v22F3 [3] is the 3.3 V output
voltage regulator that can output 2.6 Amps and take in
from 4V to 36V. It has an efficiency of 85-95% [3]. The
5V regulator has yet to be bought and is currently being
replaced by 5V linear regulator. The reason why we use
another 3.3 voltage regulator is because the Redbear duo
may need about 1 amp of current which the electron
voltage regulator will not be able to give [4]. Another
reason is because fairly economical to buy the 2.6 A
regulator. One can add as up to 2.6 A of sensors to it if it is
found necessary which we may do for other applications.

The Electron microcontroller can take a voltage of
anywhere from 3.9 to 17 volts through its power
management chip BQ24195 [7]. In the design for the
IoTECH we use the Vin pin as a way to power our
microcontroller. It also states in its specifications that a
470 uF capacitor is required in the Vin pin just in case if
the electron needs to pull more power when sending 3g

data so a 50V capacitor is used [2]. It is directly connected
to pin 16 from the OBD-II port since it can handle 11-15
volts. There also is a 470uF 50V capacitor placed at the
power source as a surge protection capacitor, just as a
precaution of a 40 Volts surge that can happen on the
vehicle's battery although this is unlikely. There is also a
50 volt capacitor located on in Vin pin of the 3.3V buck
converter which will protect from any surges as well.

The OBD-II circuitry in total takes up to 876 mW of
power and only requires 73 mA of current to use it, this is
measured value we found. It uses a 3.3V and 5V power
supply and as stated earlier will be supplied by the 2
switching voltage regulators that are going to be on the
Hub.

Table 3 shows the Hub Temperature Alert Systems
power consumption. This is used to power the application
for this system. It consists of the Maximum power
consumption, typical power consumption, and sleep power
consumption. It then breaks down the sections into our
microcontroller the Electron, sensors, voltage regulators
and the total. It also specifies how long the car battery
would be able to pull our system. The max power
consumption is 18 to 22 hours of use (30.3W); this is if
everything is going to be on all the time at absolute
maximum clock frequencies, and so on. The typical power
consumption hours is 163-200 hours (3.3W), this is what
we can expect for typical use of the system. The sleep
power consumption mode would cause the battery in the
car to last 14516-18000 hours (37mW). All these numbers
are found from datasheets of all the sensors and
computations. When using actual measured numbers for
our applications we found that The Hub would last us
about 236 hours of battery life typically and would take
2280 mW-2850mW while Idling and taking temperature
measurements.

Table 3. Hub Temperature Alert System Power
Consumption [2][3][4][12]

Our extension consists of the Red Bear Duo as well as

one Boost Converter, a Camera and IR Motion Sensor. It is
powered by a 4400mAh 3.7 volt li-po battery. It consists of
2 electrolytic capacitors. The 16V 100uF capacitor protects

6

from surges to the Red Bear Duo microprocessor. While
the 25V 47uF capacitor is used which is close to the
recommended amount for the 5V boost converter. This is
recommended because of LC voltage spikes protection
[11].

The RedBear Duo works on a voltage between 3.5-8V
therefore it is connected directly to the battery [8], while
the camera and IR Motion Sensors work on 5 volts. This is
why we use the Pololu 5V Step-Up Voltage Regulator
U3V12F5 which outputs up to 1.4 Amps. Although our
sensors only use up to 1.25 Watts, which is 337 mA, this is
for the purpose of adding more sensors to the extension for
other applications [11].

Looking at Table 4 we have the extension temperature
alert systems power consumption. It consists of the boost
converter, sensors, RedBear Duo and the total
[8][9][10][11]. It then goes down and breaks up the battery
life based on 2000 mAH and 4400mAH batteries. At first
our extension was going to use a 2000mAH battery but
then we decided to use a larger battery because it added
hours to the battery usage. We found that if everything
would have been working at a maximum with high clock
frequencies then the battery would last 3.4 hours (4.8W).
For typical use 14 hours (1.1W) and in sleep mode 35.2
hours (0.5W). We also decided to measure different
instances of using sensors and the Redbear Duo and found
that the battery could last anywhere from 8.6 to 30 hours
mattering on usage. These were experimental
measurements with different instances of one sensor on
and another one off; The total power consumption being
from 1887 mW-540 mW. This can be seen in Figure 8.

Table 4. Extension Temperature Alert System Power

Consumption [8][9][10][11]

Fig. 8. Extension Measured Power Instances

III. PROJECT MANAGEMENT

Deliverable Delivered?
Power electronics circuit built Yes

Ability to read OBD-II car data Yes

Ability to read other sensor data Yes
Breadboard prototype circuits Yes

Display data from sensors Yes

Extra:​ Wireless communication
between hub and server

Yes

Extra:​ Implement IFTTT triggers Yes
Extra:​ Ability to capture images using

serial IR camera
Yes

Table. 5. MDR Deliverables

Referring to Table 5, our team was able to successfully

complete all deliverables in addition to delivering some
extra functionality for MDR. All circuits were
breadboarded and all implemented sensors were
successfully working. We were also able to successfully
read OBD-II CAN bus data and send/receive commands.
In addition, our group was able to implement wireless
functionality with the IFTTT server and add in a working
camera module.

Our two main software developers are Chris Ingerson
(CSE) and Nigel Paine (CSE), working on implementing
all of backend code necessary to communicate between
devices (sensors, hub/extension, server, etc.). Their
expertise will also revolve around data processing and
interpreting sensor data in a way that is useful for the user.
Our two main hardware engineers are Nicholas
Korniyenko (EE) and Raghid Bahnam (EE). Their
expertise involves circuitry and power management and
are the main points of contact for any hardware-related
issues.

Breaking down the roles further, Raghid’s main area of
expertise is OBD-II communication, whereas Nick’s area
of expertise is the power distribution. Chris will be
working on the IoTECH hub while Nigel will be working
on the IoTECH extension. Each of the team members work
together to fill in where necessary and the workload should
be pretty evenly distributed throughout with weekly
meetings with our advisor and at least two meetings a
week with the team.

As we have reached the halfway point in the senior
design project, we have much left to do including
designing our product with printed custom circuit boards,
designing an enclosure, implementing power saving
features in the sensor code, enabling wireless connectivity
via Bluetooth/WiFi for hub/extension communication, and

7

then putting it all together. Refer to Figure 9 for a Gantt
chart demonstrating our outlook for CDR and our game
plan for the next phase in the project and being one step
closer to completion. Depending on progress by CDR we
plan to also implement a mobile app and potentially
implement additional applications.

Fig. 9. Executive plan for CDR

IV. CONCLUSION

In a conclusion, we had a successful MDR. We
delivered twice as much as promised and we are on our
way to finish our project on time. Surely, there will be
problems that will arise, but with the progress we made
this semester, we are confident that we will have adequate
time and resources to provide a working design for FPR.

ACKNOWLEDGEMENTS

We would like to acknowledge our advisor Professor
Jay Taneja for helping us work through planning our
project, from inception to final product. Also a thank you
to our evaluators Professor Baird Soules and Professor
Michael Zink for helping us improve our device and
offering advice on presentation and implementation.

REFERENCES

[1] Texas Instruments, “TPS6229x 1-A Step Down Converter in 2 x 2
DRV Package ,” TPS62290 datasheet, June 2007 [Revised – January
2016].
[2] ​“Particle,” Particle Datasheets Documentation | Electron
datasheet.[Online].Available:
https://docs.particle.io/datasheets/electron-(cellular)/electron-datasheet/#s
chematic. [Accessed: 20-Dec-2017].
[3] “Pololu 3.3V, 2.6A Step-Down Voltage Regulator D24V22F3,”
Pololu Robotics & Electronics​. [Online].Available:
https://www.pololu.com/product/2857. [Accessed: 20-Dec-2017].
[4] Redbear, “Redbear/Duo,” ​GitHub​, 10-Aug-2016. [Online]. Available:
https://github.com/redbear/Duo/tree/master/hardware/datasheets.
[Accessed: 20-Dec-2017].
[5] AA1Car, “Diagnosing A Car Battery That Runs Down,”
http://www.aa1car.com/​. [Online]. Available:
http://www.aa1car.com/library/battery_runs_down.htm.[Accessed:
20-Dec-2017].

[6] “OBD II power when key not in ignition,” ​Stack Exchange​. [Online].
Available:
https://mechanics.stackexchange.com/questions/23047/obd-ii-power-whe
n-key-not-in-ignition. [Accessed: 20-Dec-2017].
[7] “BQ24195 (ACTIVE) I2C Controlled 2.5A/4.5A Single Cell Charger
with 5.1V 1.3A/2.1A Synchronous Boost Operation | TI.com,” ​Texas
Instruments​. [Online]. Available: http://www.ti.com/product/BQ24195.
[Accessed: 20-Dec-2017].
[8] Redbear, “redbear/Duo,” GitHub, 11-Sep-2017. [Online]. Available:
https://github.com/redbear/Duo. [Accessed: 20-Dec-2017].
[9] “LinkSprite JPEG Color Camera Serial UART Interface With
Infrared,” LinkSprite, Nov-2010. [Online]. Available:
http://www.linksprite.com/upload/file/1291522825.pdf. [Accessed:
20-Dec-2017].
[10] “HC-SR501 PIR MOTION DETECTOR,” Particle. [Online].
Available:
https://docs.particle.io/assets/datasheets/electronsensorkit/HC-SR501.pdf.
[Accessed: 20-Dec-2017].
[11] “Pololu 5V Step-Up Voltage Regulator U3V12F5,” ​Pololu Robotics
& Electronics​. [Online]. Available:
https://www.pololu.com/product/2115. [Accessed: 20-Dec-2017].
[12]“Waterproof DS18B20 Digital temperature sensor extras,” ​Adafruit​.
[Online]. Available: https://www.adafruit.com/product/381. [Accessed:
20-Dec-2017].
[13]“ T‑Mobile SyncUP DRIVE™ ,” ​T-Mobile​. [Online]. Available:
https://explore.t-mobile.com/t-mobile-sync-up-drive.[Accessed:
20-Dec-2017].
[14]“Snapshot From Progressive | Big Discounts For Good Drivers,”
Progressive​.[Online].Available:
https://www.progressive.com/auto/discounts/snapshot/.[Accessed:
20-Dec-2017].
[15] https://www.automatic.com/pro/
[16] OBD Solutions “Multiprotocol OBD to UART Interpreter
Datasheet’’ STN1110 datasheet Oct. 2010 [Revised July. 2012].
[17] Industries, A. (2018). Lithium Ion Polymer Battery - 3.7v 2500mAh.
[online] Adafruit.com. Available at:
https://www.adafruit.com/product/328 [Accessed 6 Feb. 2018].
[18] Pololu.com. (2018). Pololu 5V Step-Up Voltage Regulator
U3V12F5. [online] Available at: https://www.pololu.com/product/2115
[Accessed 6 Feb. 2018].
[19] Arduino.cc. (2018). Arduino Reference. [online] Available at:
https://www.arduino.cc/reference/en/ [Accessed 6 Feb. 2018].
[20] Arduino.cc. (2018). Arduino Reference - Serial. [online] Available
at:
https://www.arduino.cc/reference/en/language/functions/communication/s
erial/ [Accessed 6 Feb. 2018].
[21] “Hue White and color ambiance Single bulb BR30,” ​Philips​.
[Online]. Available:
https://www2.meethue.com/en-us/p/hue-white-and-color-ambiance-single
-bulb-br30/46677468941. [Accessed: 12-Feb-2018].
[22] “Your life with Nest,” ​Nest​. [Online]. Available:
https://nest.com/thermostats/nest-learning-thermostat/overview/.
[Accessed: 12-Feb-2018].
[23]​EngineersGarage, “CAN Protocol - Understanding the Controller
Area Network Protocol,” ​EngineersGarage​, 21-Mar-2017. [Online].
Available:
https://www.engineersgarage.com/article/what-is-controller-area-network.
[Accessed: 12-Feb-2018].
[24] Particle (2018) Particle Guides. [online] Available at:
https://docs.particle.io/guide/getting-started/intro/core/. [Accessed 17
October 2017].
[25] HC Serial Bluetooth Products. Available at:
https://cdn.makezine.com/uploads/2014/03/hc_hc-05-user-instructions-bl
uetooth.pdf. [Accessed 16 January 2018].
[26] If This Then That (2018). IFTTT. Available at: https://ifttt.com/.
[Accessed 12 October 2017].

