

IoTECH
Internet of Things Extensible Car Hub

Nigel S. Paine, CSE; Raghid Bahnam, EE; Nicholas A. Korniyenko, EE; Christopher R. Ingerson, CSE

“IoTECH”, also known as the Internet of Things
Extensible Car Hub, is an IoT device that interfaces
with the OBD-II diagnostics port and a variety of
external sensors. In an era of WiFi-enabled devices, we
seek to create an IoT platform that is unique to
automotive systems. This platform will allow the user
to create an application that will interface with an
array of sensors and communicate serially or wirelessly
via Bluetooth, WiFi, and 3G data. User data is
transmitted via 3G to a web server where notifications
are then broadcast. A few sample applications have
been implemented with IoTECH such as the
“TempAlert” system which notifies a user if there is a
person or pet in the car and a certain temperature
threshold is reached.

I. INTRODUCTION

We see more IoT devices integrated into homes across the
country, but there aren’t such devices out there for
automotive applications. Nest thermostat and Hue Philips
Light Bulbs are examples of IoT devices. Both are app
controllable where prefered lighting and temperature can
be controlled via app. Nest can be programmed to set the
temperature when the user comes home where Hue can
change each light bulb to a prefered color and brightness
[21][22]. Existing automotive IoT devices are limited to
the space underneath the steering column where the
devices plug into the OBD-II port [13][14][15]. These
devices may have a variety of sensors but are limited to
being under the steering column. For example, a device is
able to give GPS coordinates but not give a picture of a
breakin, or detect motion of an endangered child due to
temperature. What we plan to create is a “smart hub”
which will be directly connected to a vehicle’s OBD-II
port but is also extended with sensors to produce many
more different applications that can’t be done under the
steering column. This includes infrared sensing and picture
taking done by this extension. This IoT device would be
both extensible and modular, capable of integrating with
most sensors via a hardwired or wireless connection. One
of the main goals of this device is to receive live-updated
information directly to the user’s phone, whether it is
getting temperature alerts or notifying the user if the car
has been hit. We hope to extend the usability of the

OBD-II port beyond its current capabilities using our
technology. Our device could save lives of children left by
their parents in hot cars, catch thieves red handed, report
that your car got hit, and so on forth. It will make this
country safer. The applications can be limitless. We want
this device like home IoT devices to be extended not only
to a few applications and sensors but to maybe hundreds to
suit each person’s needs. Table 1 shows the hardware
specifications for our Hub and Extension. It contains the
initial requirements that we set for ourselves and what our
actual prototype specifications were. Some of the
specifications were accomplished while others would be
our next goal to accomplish.

Table 1. IoTECH System Specifications

2

II. DESIGN

Fig. 1. IoTECH Signals Block Diagram

Fig. 2. IoTECH Power Block Diagram

A. IoTECH Hub

The most important part of the design in Figure 1 is the
main hub. For our hub, we are using the Particle Electron
[24] as the main device. The main goal of our hub is to
request data from the OBD-II port and extension and use
the data from the OBD-II port, extension, and its own

external sensors in order to run a set of designed
applications.

The OBD-II port provides crucial diagnostic information
about the current status of the car, and also provides
constant power for the Electron. It supplies 12 volts, which
can be fed directly into the V​in pin of the Electron. The
Electron has a built-in voltage regulator that can take an
input of up to 18 volts and converts it to the 5 volts
necessary to run the Electron. More information about the
power supplied by the OBD-II port will be provided in
later sections.

Attached to the Electron, we have a Bluetooth module
[25] that is able to accept communications from the
IoTECH Extension; the extension will be explained in the
next section. The data received by the module is
transmitted to the Electron via the TX/RX pins, where the
data can be stored in variables and used in applications.

We have two sensors on the main hub, one that
measures the temperature and humidity of the ambient
environment inside the car, and a GPS [41]. The purpose
of the temperature/humidity sensor is to make sure that any
young children or animals left in the car, whether
intentionally or accidentally are not in any danger as
temperatures rise in the summer. All of the variables are
processed in the firmware of the Electron, and once an
application evaluates to true, an event is published to the
cloud via 3G. Communication with the server and the
integration of If This Then That (IFTTT) [26] will be
discussed later. A sample application may use the on-board
GPS which returns the current location of the user’s
vehicle. This data can be used in parallel with the Google
Maps API [40] to return the speed limit of the road a user
is traveling on. That speed limit can be compared to the
car’s current speed, as retrieved by the OBD-II port, and if
a user is traveling too fast, similar notifications can be sent
through IFTTT. All the circuitry for the Hub was mounted
on the PCB shown in Appendix Figure 12.

B. IoTECH Extension

The next biggest component in the IoTECH device, and
more of a proof-of-concept than anything is the IoTECH
“Extension”. The extension’s role is to “extend” the
functionality of the main smart hub and allow users to
interface with external sensors via Bluetooth Low Energy
(BLE) connectivity enabled by the HC-05 Bluetooth
module [4]. This device is powered by a 3.7V Lithium
Polymer (LiPo) battery [17] and holds any sensors that
require better location placement in the car (i.e. not under
the dashboard). The LiPo battery is boosted to 5V with a
step-up voltage regulator [18] to support powering any
sensors relying on a 5V input. The extension also has
built-in charging capabilities with the charging module that
is based on the MCP73833 microchip, that can charge

3

Li-Po batteries with up to 1000mA of current [38]. This
module is seen in Figure 3. Everything is mounted on a
PCB that can be seen in Appendix Figure 13 and put into
an enclosure seen in Appendix Figure 14.

Fig. 3. USB Li-ion/LiPoly Charger- v.1.2 [38]

The main processing unit on the extension is the Particle

Photon with built-in WiFi capabilities and firmware
supporting the Particle API in addition to many of the
libraries from the Arduino API [27]. The main
programming development environment being used to
upload code to the board is the Particle Build Online IDE
[28]. Note that previously, the Redbear Duo BLE/WiFi
microcontroller [8] and Arduino IDE [19] were being used
in our extension. After development with the Redbear Duo,
we found it in our best interest to use the Particle Photon
instead for a more compact design and better integration
with the IoTECH system.

The first main sensor used on the extension is the
wide-angle camera. The camera we chose is the LinkSprite
JPEG Serial UART Infrared camera. This camera can have
a variable resolution but has a default resolution of
160x120 with night vision enabled by infrared LEDs and
up to 120 degree field of view [9]. Serial communication is
enabled by connecting the camera to the extension
multiplexer chip which connects to the Particle Photon
serial pins (pin D16 and D17 or the RX/TX pins as seen in
Figure 4 with the Particle Photon pinout map). The
multiplexer is a new hardware feature in the IoTECH
extension since the Particle Photon only has a single set of
serial TX/RX pins so we have to use the multiplexer as a
“switch” between the serial bluetooth module and the
serial camera using a select pin. The multiplexer chip we
opted to use is the Texas Instruments SN74HC157N chip
[29]. The given Arduino code for the serial camera is not
readily compatible with the Particle Photon due to

Fig. 4. Particle Photon Pinout

hardware limitations (i.e. buffer size) so changes in the
code have to be implemented to make sure that when serial
data is sent over to the Photon device, the data buffer does
not overflow. In addition, the baud rates must also be set
accordingly to avoid data transmission errors.

Camera picture data is sent as a stream of hex values
formatted in JPEG format. Once the camera data is on the
Particle Photon the multiplexor handles the switch between
the camera to the bluetooth module. The JPEG image is
then transmitted line-by-line to the IoTECH hub, where
another serial HC-05 bluetooth module is being used to
receive the data and store it on the Particle Electron. The
image is about 50KB and takes a little less than a minute to
transmit via Bluetooth Low Energy (~30 seconds to take
the picture and ~30 seconds to transmit via BLE). The
image is then sent from the hub to the back-end server via
a 3G mobile connection and takes about 20 seconds (see
IoTECH server for more info on implementation). The
image is then cleaned up by a backend Python script and
converted to a nicely-formatted JPEG image file which is
then uploaded to the Cloudinary database [30] and sent to a
mobile phone using a custom image URL and the Twilio
API [31]. In total, the transmission time for an image from
extension to phone is about 2 minutes. To speed up
transmission time, in the future, a better camera should be
implemented and WiFi should be used for large data
transfer (i.e. image/video files); this could significantly cut
down on transmission time to potentially transmit a
full-size JPEG image in under 30 seconds [32]. Just for
comparison, the HC-05 BLE protocol transmits at a
maximum rate of 375KB/s whereas our image size is 50KB
so theoretically we could transfer it in under a second, but
of course with interference and distance between the
modules that data rate goes down significantly. Also, a
limiting factor is the default baud rate of 38400 which we

4

were unable to test any higher baud rates for, which may
have potentially also increased transfer speed [33].

The second sensor being implemented on the extension
is the HC-SR501 passive infrared (PIR) motion sensor.
This sensor will be able to communicate in parallel with
the camera so that when motion is triggered, the camera
turns on and snaps a picture of the car’s interior. The delay
on the motion sensor can be set directly on the device
(ranging from 0.3 seconds to 5 minutes) or via software.
The motion sensor also has an angle of view of up to 110
degrees and up to 7 meters away [10].

With the motion sensor and camera, the “TempAlert”
system can be implemented more robustly, allowing the
user to only get notifications when there is motion detected
in the car in addition to receiving a low-resolution picture
(to avoid high 3G data consumption) identifying who or
what is in the car. TempAlert is a proof-of-concept
application developed by our team incorporating IoTECH
allowing the user to receive notifications if the internal
temperature exceeds a set threshold while also detecting
motion and capturing an image to ID false positives.

A third sensor implemented on the IoTECH Extension is
the MQ2 Gas Sensor [36] which can detect the presence of
alcohol, Carbon Monoxide (CO), and smoke. The gas
sensor uses a nonlinear but proportional function of gas
concentration to voltage, so as the gas concentration
increases the voltage also increases. The sensitivity used
may change depending on the gas being detected. Figure 5
shows a better depiction of which gases are able to be
detected with the MQ2 gas sensor and the range of PPM
(Parts Per Million) for a particular gas it can detect in the
air surrounding the sensor. For this sensor we created the
GasAlert application which simply sends a text to a user
whenever alcohol is present in the vehicle. While we chose
alcohol the user could setup the sensor to detect something
different such as CO. As proof of concept, the alcohol
sensor was tested using mouthwash and hand sanitizer,
both containing some level of alcohol. The Photon in the
extension would then send a trigger via BLE to the
Electron in the hub which would update the trigger via 3G
in the Particle Cloud [37], allowing a text message to be
sent to the user alerting them of the presence of alcohol in
the car.

Fig. 5 MQ2 Gas Concentration for Varying Gases [36]

All hardware components were tested using the Particle

CLI (Command-Line Interface) and a terminal [34] to
validate that the correct data is being sent/received. The
built-in Particle CLI serial monitor echoes data via the
USB-connected Photon. Data tests were also run in parallel
with the IoTECH hub on the Particle Electron
microcontroller to validate that data was being sent via
Bluetooth in a secure and consistent manner.

C. OBD-II Communication

Fig. 6. OBD-II Pinout [6]

​Figure 6 shows a pinout diagram of an OBD-II port.

Reading OBD-II was done in few stages. OBD-II uses
three protocols to communicates with the outside world.
Since 2008, one protocol was mandated in every small size
car in the USA. It is known as the CAN protocol [23].

5

With speed up to 1 mbps, it is the fasted protocol that
OBD-II uses. IoTECH works only with cars that uses CAN
protocol. Before being able to read any data, the 12V of
the car’s battery needed to be regulated to 5V and 3.3V to
provide the required voltage that the system needs to
operate. This was done by using L7805C that regulated the
voltage down to 5V. That 5 V was then further regulated
down to 3.3V using LE33. This can be seen in Figure 7.

Fig. 7. Voltage regulator for the car battery

The system responsible of reading the data consists of

three subsystems. They are: a differential subsystem, an
interrupter subsystem, and finally the host. CAN bus is a
two lines communication. It consists of CAN-H and
CAN-L. The first subsystem is a differential chip known as
MCP2551. It takes the difference between CAN-H and
CAN-L and produce one single. That single is then sent to
the second subsystem, The Interrupter. The interrupter is
STN1110. It is the world’s smallest, lowest cost
multiprotocol OBD-II to UART interpreter IC. It has the
capability to interpret any protocol to universal
asynchronous receiver-transmitter (UART). This is
illustrated in Figure 8 below. STN1110 provides an easy
means of accessing vehicle data, including diagnostic
trouble codes, MIL status, VIN, Inspection and
Maintenance (I/M) information, In-use Performance
Tracking (IPT), and hundreds of real-time parameters. ​for
the ELM327 command set, while outperforming the
original ELM327 IC in every category: stability,
performance, and features. ​Finally, the interrupter is
connected to the host through RX, TX ports.

Fig. 8. OBD II system

The system is a message-based protocol. The user request
specific information for the interrupter by sending a
request of HEX values. The Host will then receive a
message that has the requested information. OBD-II

provides many modes. For now, we are only interested in
live data. That is mode 01. Every request starts with 01 to
indicate the request for live data. That 01 is then followed
by the parameter value. After requesting a specific
parameter. OBD-II will respond with another HEX value.
That value start with 41 to indicate that it is live. The
follow is values that can be translated to real life data using
provided equations.
 To have a proof of concept, different data was obtained
from the car. Speed, RPM, Ambient temperature, and
coolant temperature were some of the parameters obtained
from the car. Table 2 shows data obtained by requesting
specific parameters. The society of Automotive Engineers
(SAE) provides equations to translate the data obtained to
real live results.

Table 2. Data Requested and Received from OBD-II

D. Server Communication

Stable connection to a server is a very crucial aspect of
the functionality of this project. The hub communicates
with the Particle Cloud server using UDP (User Datagram
Protocol), which saves a lot of data, as well as power. By
not constantly requiring handshakes in order to keep the
connection between the hub and cloud active, users are
able to conserve their data and make sure that they have
available data for when they need it. Acknowledgements
are manually required when meaningful data is pushed,
however, to ensure that the triggers are received.

When an event is published, a trigger is executed by
IFTTT. If This Then That is a free service that can be
integrated with Particle systems. In the case of our
“TempAlert” application, the service will execute when the
necessary prerequisites are met; the temperature is too hot,
and movement is detected in the car. When our trigger is
executed, users will receive a text message notifying them
that their pet or child is in danger.

The backend server handling large data transfer (i.e.
camera/video data) is implemented through a virtual Linux
machine with the Google Cloud service [38] and is a
Java-based server. The server is able to handle multiple
concurrent threads and bind these threads to a common
IP/port. The main data processing happens with Python
through a built-in script that the server calls when
receiving a large data file such as an image file. Currently
with the TempAlert system, when an image is sent to the

6

server via 3G, it first has to wait to receive the entire image
and store that in a .txt file. The Python script then parses
through the .txt file and creates a JPEG file which is
uploaded to the Cloudinary server. Then using the custom
Cloudinary image URL the Python script is able to send an
MMS (Multimedia Message) to a specified user’s phone
using the Twilio API, as long as the user’s phone is
validated in the Twilio backend. Both MMS and SMS
sample messages are provided in Figure 9.

Fig. 9. Sample SMS IFTTT Trigger (left) and MMS Twilio

Image Upload

E. Power Distribution Systems

Our power distribution system is distributed into two
different systems as specified earlier; the Hub and the
Extension. These two systems can be seen in the block
diagram in Figure 2. Each of these systems run off a
different power supply and are vital in running our system.

The Hub is where a lot of our main electronics are
located that have sensors on them as well as the
microprocessor that sends data via 3G. Its power source is
the pin 16 located on the OBD-II port, this pin is what
powers the OBD-II devices used to get codes needed for
diagnostics. Pin 4 is the chassis ground and pin 5 is the
signal ground. This can be seen in Figure 6. This gets its
power from the battery of the car which gets recharged
when the car is on using an alternator. The voltage on this
pin can change and be different at different times. This
matters on how the alternator charges the battery and how
much the battery can hold charge for [6].

A full software overview of the system can be found in
Appendix B. A high-level representation of
communication between IoTECH hub and extension as
well as all server communication can be seen there as
well.

 Fig. 10. Experimental Data for Car Battery Voltage Over

Time

A vehicles voltage also tends to spike in a negative
direction and then towards the positive direction when the
car is idle and then turned on. Figure 10 shows this very
well; the pin starts a little less than 13 volts, as the car gets
ignited it drops down to about 7 volts but then increases to
14.7 volts. This of course may be different for different
vehicles. Another factor to consider is the temperature. As
the temperature becomes smaller the battery’s voltage falls
0.01 volts every 10 degrees Fahrenheit [5]. All of this are
factors considered in the design hardware circuitry.

The Hub consists of three switching voltage regulators.
One located on the hub that is used on the electron
microcontroller that has a 3v3 pin that can output 800mA.
The model name for it is called the TPS62291 which
outputs 1 Amp, can take in 2.3-6 volts, output 3.3 volts,
and is 96% efficient [1]. It is used as a pull up for the
temperature sensor. The two other voltage regulators that
are being used are a 5V and another 3.3V regulator. The
5V is used for some of the OBD-II circuitry as well as the
Bluetooth HC-05 module, and the 3.3 V is used for the
Particle Electron microcontroller, temperature/humidity
sensor SHT10, GPS, as well as some of the OBD-II
circuitry [25]. The D24v22F3 is the 3.3 V output voltage
regulator that can output 2.6 Amps and take in from 4V to
36V. It has an efficiency of 85-95% [3]. The 5V regulator
D24V22F5 is a 2.5A step down voltage regulator that is
ideal for the Hub which has a typical efficiency of 85-95%
[39]. The reason why we use another 3.3 voltage regulator
is because it is fairly economical to buy the 2.6 A regulator
and if we wanted to expand our sensor count for other
applications we would have the voltage regulator that can
handle it.

The Electron microcontroller can take a voltage of
anywhere from 3.9 to 17 volts through its power
management chip BQ24195 [7]. In the design for the
IoTECH we use the Vin pin as a way to power our

7

microcontroller. It also states in its specifications that a
470 uF capacitor is required in the Vin pin just in case if
the electron needs to pull more power when sending 3g
data so a 50V capacitor is used [2]. It is directly connected
to pin 16 from the OBD-II port since it can handle 11-15
volts. There also is a 470uF 50V capacitor placed at the
power source as a surge protection capacitor, just as a
precaution of a 40 Volts surge that can happen on the
vehicle's battery although this is unlikely. There is also a
50 volt capacitor located on in Vin pin of the 3.3V buck
converter which will protect from any surges as well.

The OBD-II circuitry in total takes up to 370 mW of
power and only requires 73 mA of current to use it, this is
measured value we found. It uses a 3.3V and 5V power
supply and as stated earlier will be supplied by the 2
switching voltage regulators that are going to be on the
Hub.

Table 3 shows the Hub typical power consumption. This
is used to power the application for this system. It shows
how long the car battery would be able to pull our system.
It is broken up into different components and then
computes total power. All these numbers are found from
datasheets of all the sensors and computations. We found
that the hub would last us about 151 hours of battery life
typically and can take up to 3.58 W of power consumption.

Table 3. Hub Power Consumption [2][3][4][12][25][39]

Our extension consists of a Particle Photon as well as
one boost converter, a camera and IR motion sensor, gas
sensor, and a power management unit. It is powered by a
4400mAh 3.7 volt li-po battery. It consists of 2 electrolytic
capacitors. The 16V 100uF capacitor protects from surges
to the Photon microprocessor. While the 25V 47uF
capacitor is used which is close to the recommended
amount for the 5V boost converter. This is recommended
because of LC voltage spikes protection [11].

The photon works on a voltage between 3.6-5.5V
therefore it is connected directly to the battery [27], while
the camera, IR Motion Sensors, and gas sensor work on 5
volts. This is why we use the Pololu 5V Step-Up Voltage
Regulator U3V12F5 which outputs up to 1.4 Amps.
Although our sensors and bluetooth only use up to 2.175
Watts, which is 435 mA, this is for the purpose of adding
more sensors to the extension for other applications [11].

Looking at Table 4 we have the extension temperature
alert systems power consumption. It consists of the boost
converter, sensors, Particle Photon and the total power and,
current [36][9][10][11][27]. It then goes down and breaks
up the battery life based on the 4400mAH battery. At first
our extension was going to use a 2000mAH battery but
then we decided to use a larger battery because it added
hours to the battery usage. We found that if everything
would have been working at a maximum with high clock
frequencies then the battery would last 6.3 hours (2.6W).
For typical use 13.5 hours (1.2W) and at a minimum power
consumption of 26.6 hours (0.6W).

Table 4. Extension Power Consumption

[36][9][10][11][27]

III. PROJECT MANAGEMENT

Our team was able to successfully complete all
deliverables in addition to delivering some extra
functionality for the final demo. All circuits were printed
onto a custom circuit board (PCB) and all implemented
sensors were successfully working. We were also able to
successfully read OBD-II CAN bus data and send/receive
commands. In addition, our group was able to implement
wireless functionality with the IFTTT server, 3D print
enclosures for our IoTECH hub and extension, add in a
working camera module, gas sensor and GPS module,
create a backend Java/Python server, and integrate that
with the Twilio and Cloudinary APIs.

Our two main software developers were Chris Ingerson
(CSE) and Nigel Paine (CSE), working on implementing
all of the backend code necessary to communicate between
devices (sensors, hub/extension, server, etc.). Their
expertise also revolved around data processing and
interpreting sensor data in a way that is useful for the user.
Our two main hardware engineers were Nicholas
Korniyenko (EE) and Raghid Bahnam (EE). Their
expertise involved circuitry, power management, 3D
printing, PCB design, and were the main points of contact
for any hardware-related issues.

Breaking down the roles further, Raghid’s main area of
expertise was OBD-II communication and IoTECH hub
PCB/enclosure/power management design, whereas Nick’s

8

area of expertise was power distribution and IoTECH
extension PCB/enclosure/power management design. Chris
and Nigel worked in parallel to successfully make a
working system via software. Each of the team members
worked together to fill in where necessary and the
workload was pretty evenly distributed throughout with
weekly advisor meetings and at least two meetings a week
with the team. Time management was essential and Gantt
charts with deliverable plans were a crucial component to
staying on track.

IV. CONCLUSION

In a conclusion, we had a successful final demo with
several working applications. Several optimization issues
have yet to be resolved such as having the server run
without resetting and transfer large data such as images at
a faster rate (i.e. replacing BLE with WiFi and replacing
the old camera module with a more robust up-to-date
module). Reliability and security are always a concern so
more effort would have to be placed into these two areas.
In the future, the IoTECH platform may be marketed to
hobbyists allowing them to “hack” their car or to
consumers providing them with specific applications such
as TempAlert.

APPENDIX

A. COST ANALYSIS

Table 5. IoTECH Platform Cost Overview

In table 5 above we show how much it would cost to
develop one an IoTECH device and how much it would
cost to produce 1000 of them. As seen in the table,

development cost is about 76 dollars more for an
individual device purchase versus a bulk purchase.

B. SOFTWARE OVERVIEW

Fig. 11. IoTECH Software Overview

C. PCB DESIGN

Fig. 12. Hub PCB

9

Fig. 13. Extension PCB

D. 3D PRINT DESIGN

Fig. 14. Extension Enclosure

E. ACKNOWLEDGEMENTS

We would like to acknowledge our advisor Professor
Jay Taneja for helping us work through planning our
project, from inception to final product. Also a thank you
to our evaluators Professor Baird Soules and Professor
Michael Zink for helping us improve our device and
offering advice on presentation and implementation.

REFERENCES

[1] Texas Instruments, “TPS6229x 1-A Step Down Converter in 2 x 2
DRV Package ,” TPS62290 datasheet, June 2007 [Revised – January
2016].

[2] ​“Particle,” Particle Datasheets Documentation | Electron
datasheet.[Online].Available:
https://docs.particle.io/datasheets/electron-(cellular)/electron-datasheet/#s
chematic. [Accessed: 20-Dec-2017].
[3] “Pololu 3.3V, 2.6A Step-Down Voltage Regulator D24V22F3,”
Pololu Robotics & Electronics​. [Online].Available:
https://www.pololu.com/product/2857. [Accessed: 20-Dec-2017].
[4] Components101.com. (2018). HC-05 Bluetooth Module Pinout,
Specifications, Default Settings, Replacements & Datasheet. [online]
Available at:
https://components101.com/wireless/hc-05-bluetooth-module [Accessed 7
May 2018].
[5] AA1Car, “Diagnosing A Car Battery That Runs Down,”
http://www.aa1car.com/​. [Online]. Available:
http://www.aa1car.com/library/battery_runs_down.htm.[Accessed:
20-Dec-2017].
[6] “OBD II power when key not in ignition,” ​Stack Exchange​. [Online].
Available:
https://mechanics.stackexchange.com/questions/23047/obd-ii-power-whe
n-key-not-in-ignition. [Accessed: 20-Dec-2017].
[7] “BQ24195 (ACTIVE) I2C Controlled 2.5A/4.5A Single Cell Charger
with 5.1V 1.3A/2.1A Synchronous Boost Operation | TI.com,” ​Texas
Instruments​. [Online]. Available: http://www.ti.com/product/BQ24195.
[Accessed: 20-Dec-2017].
[8] Redbear, “redbear/Duo,” GitHub, 11-Sep-2017. [Online]. Available:
https://github.com/redbear/Duo. [Accessed: 20-Dec-2017].
[9] “LinkSprite JPEG Color Camera Serial UART Interface With
Infrared,” LinkSprite, Nov-2010. [Online]. Available:
http://www.linksprite.com/upload/file/1291522825.pdf. [Accessed:
20-Dec-2017].
[10] “HC-SR501 PIR MOTION DETECTOR,” Particle. [Online].
Available:
https://docs.particle.io/assets/datasheets/electronsensorkit/HC-SR501.pdf.
[Accessed: 20-Dec-2017].
[11] “Pololu 5V Step-Up Voltage Regulator U3V12F5,” ​Pololu Robotics
& Electronics​. [Online]. Available:
https://www.pololu.com/product/2115. [Accessed: 20-Dec-2017].
[12]​Adafruit Industries, “USB LiIon/LiPoly charger,” ​Adafruit​. [Online].
Available: https://www.adafruit.com/product/259. [Accessed:
14-May-2018].
[13]“ T‑Mobile SyncUP DRIVE™ ,” ​T-Mobile​. [Online]. Available:
https://explore.t-mobile.com/t-mobile-sync-up-drive.[Accessed:
20-Dec-2017].
[14]“Snapshot From Progressive | Big Discounts For Good Drivers,”
Progressive​.[Online].Available:
https://www.progressive.com/auto/discounts/snapshot/.[Accessed:
20-Dec-2017].
[15] https://www.automatic.com/pro/
[16] OBD Solutions “Multiprotocol OBD to UART Interpreter
Datasheet’’ STN1110 datasheet Oct. 2010 [Revised July. 2012].
[17] Industries, A. (2018). Lithium Ion Polymer Battery - 3.7v 2500mAh.
[online] Adafruit.com. Available at:
https://www.adafruit.com/product/328 [Accessed 6 Feb. 2018].
[18] Pololu.com. (2018). Pololu 5V Step-Up Voltage Regulator
U3V12F5. [online] Available at: https://www.pololu.com/product/2115
[Accessed 6 Feb. 2018].
[19] Arduino.cc. (2018). Arduino Reference. [online] Available at:
https://www.arduino.cc/reference/en/ [Accessed 6 Feb. 2018].
[20] Arduino.cc. (2018). Arduino Reference - Serial. [online] Available
at:
https://www.arduino.cc/reference/en/language/functions/communication/s
erial/ [Accessed 6 Feb. 2018].
[21] “Hue White and color ambiance Single bulb BR30,” ​Philips​.
[Online]. Available:
https://www2.meethue.com/en-us/p/hue-white-and-color-ambiance-single
-bulb-br30/46677468941. [Accessed: 12-Feb-2018].

10

[22] “Your life with Nest,” ​Nest​. [Online]. Available:
https://nest.com/thermostats/nest-learning-thermostat/overview/.
[Accessed: 12-Feb-2018].
[23]​EngineersGarage, “CAN Protocol - Understanding the Controller
Area Network Protocol,” ​EngineersGarage​, 21-Mar-2017. [Online].
Available:
https://www.engineersgarage.com/article/what-is-controller-area-network.
[Accessed: 12-Feb-2018].
[24] Particle (2018) Particle Guides. [online] Available at:
https://docs.particle.io/guide/getting-started/intro/core/. [Accessed 17
October 2017].
[25] HC Serial Bluetooth Products. Available at:
https://cdn.makezine.com/uploads/2014/03/hc_hc-05-user-instructions-bl
uetooth.pdf. [Accessed 16 January 2018].
[26] If This Then That (2018). IFTTT. Available at: https://ifttt.com/.
[Accessed 12 October 2017].
[27] Docs.particle.io. (2018). Particle. [online] Available at:
https://docs.particle.io/datasheets/photon-(wifi)/photon-datasheet/
[Accessed 7 May 2018].
[28] Docs.particle.io. (2018). Particle. [online] Available at:
https://docs.particle.io/guide/getting-started/build/photon/ [Accessed 7
May 2018].
[29] Ti.com. (2018). [online] Available at:
http://www.ti.com/lit/ds/scls113d/scls113d.pdf [Accessed 9 May 2018].
[30] Cloudinary.com. (2018). Django SDK–Python file upload, image
and video manipulation | Cloudinary. [online] Available at:
https://cloudinary.com/documentation/django_integration [Accessed 9
May 2018].
[31] Twilio.com. (2018). Twilio Python Quickstarts for SMS, Voice and
More. [online] Available at:
https://www.twilio.com/docs/quickstart/python [Accessed 9 May 2018].
[32] Digikey.com. (2018). Comparing Low-Power Wireless Technologies
(Part 1) | DigiKey. [online] Available at:
https://www.digikey.com/en/articles/techzone/2017/oct/comparing-low-p
ower-wireless-technologies [Accessed 9 May 2018].
[33] Robotshop.com. (2018). [online] Available at:
https://www.robotshop.com/media/files/pdf/rb-ite-12-bluetooth_hc05.pdf
[Accessed 9 May 2018].
[34] Docs.particle.io. (2018). Particle. [online] Available at:
https://docs.particle.io/guide/tools-and-features/cli/photon/ [Accessed 9
May 2018].
[35] Google Cloud. (2018). Google Cloud Platform Documentation |
Documentation | Google Cloud. [online] Available at:
https://cloud.google.com/docs/ [Accessed 9 May 2018].
[36] Docs.particle.io. (2018). [online] Available at:
https://docs.particle.io/assets/datasheets/electronsensorkit/MQ-2.pdf
[Accessed 9 May 2018].
[37] Particle. (2018). Particle | Device Cloud. [online] Available at:
https://www.particle.io/products/software/device-cloud/ [Accessed 9 May
2018].
[38] Adafruit Industries, “USB LiIon/LiPoly charger,” ​Adafruit​. [Online].
Available: https://www.adafruit.com/product/259. [Accessed:
14-May-2018].
[39] “Pololu 5V, 2.5A Step-Down Voltage Regulator D24V22F5,” ​Pololu
Robotics & Electronics​. [Online]. Available:
https://www.pololu.com/product/2858. [Accessed: 15-May-2018].
[40] Google Cloud. (2018). Google Maps Platform - Geo-location APIs |
Google Maps Platform | Google Cloud. [online] Available at:
https://cloud.google.com/maps-platform/ [Accessed 15 May 2018].
[41] Industries, A. (2018). Adafruit Ultimate GPS Breakout - 66 channel
w/10 Hz updates. [online] Adafruit.com. Available at:
https://www.adafruit.com/product/746 [Accessed 15 May 2018].

