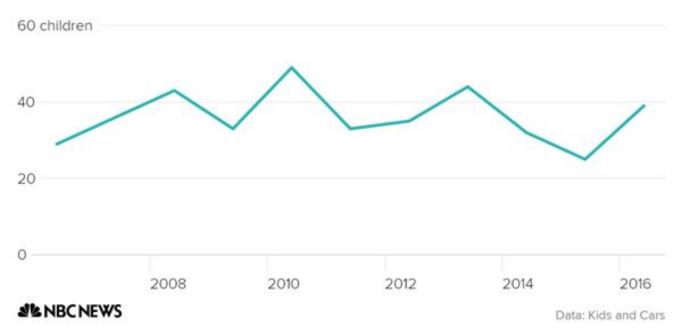

Preliminary Design Review

UMassAmherst Who We Are

Amer Becirovic (EE)

Sean Danielson (EE)

George Bayides (EE)


Kevin Ford (CSE)

Problem

- Every year, people all over the world forget their children or pets inside of a hot vehicle
- These children and pets die because they undergo heat stroke without any relief
- Our team is creating a system to prevent hot car deaths

Significance and Impact

Children Killed in Hot Cars in America Per Year

- On average, 37 children per year die in a hot car
- Hundreds of pets also die

Research

- Heat stroke occurs at a body temperature of 104
 °F (40.0 °C)⁽¹⁾
- Even on a 70 °F day, the inside temperature of a car can exceed 120 °F⁽²⁾
- It is generally not good for babies and dogs to be active in temperatures of 101+ oF⁽³⁾

Existing Solutions

Sense a Life

- Pressure sensor sits in baby's car seat, thermometer simultaneously measures temperature
- If temperature is high, and weight sensor is tripped, user is alerted along with 2 emergency contacts

ChildMinder

- Same as above, but comes with a beeping keyring device instead
- What do these systems have in common?
 - Both systems alert, but do not take any real action

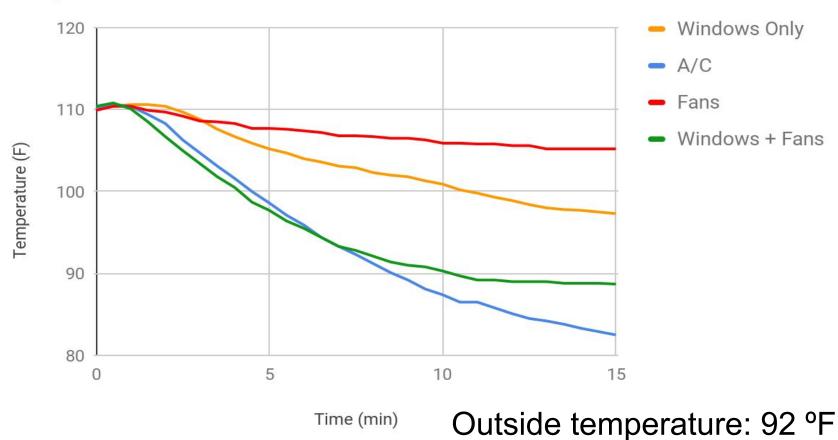
Our Proposed Solution

- Design a system that not only alerts, but also takes a physical action in prevention
- Cool the car down automatically by taking advantage of systems already built into the car
- What happens without a system that takes action:

Testing Method

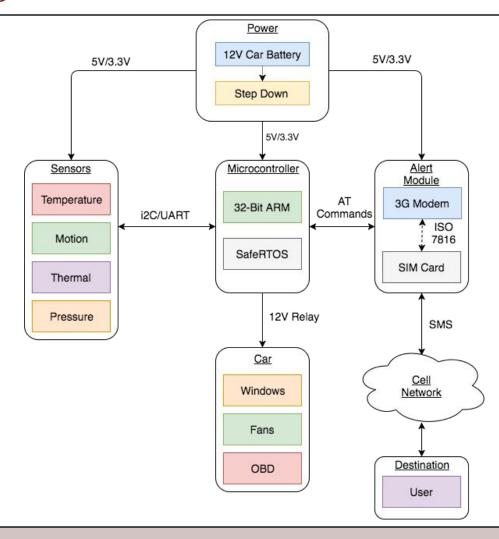
- Left car outside on 92°F day
- Had car heat to 110°F before activating cooling method
- Measured temperature over 15 minute span

Car Used


- Red Mazda 3 2006
- Black leather seats
- Electronic fan control
- No remote starter

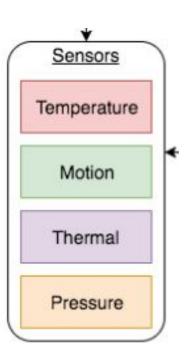
<u>UMassAmherst</u>

Results

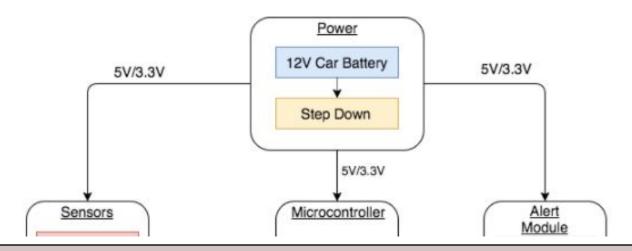

Analysis

A/C	Windows and Fans
+ Cools Fastest	+ Cools Almost As Well As A/C
+ Reaches Lowest Temperatures	+ No Remote Start Needed
- Requires Remote Start	+ Easier to Implement
- Cannot Remote Turn Off	- Does not cool as much as A/C

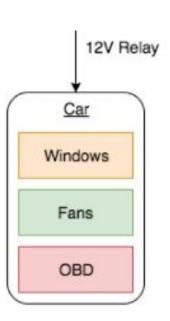
System Specifications


- 1. Measure temperature in a car
- Detect if child is in the car
- 3. Integrate alert system with cellphone
- 4. System should be compatible with most sedans
- Easy installation for a mechanic/auto electronics expert
- 6. Must take action to cool car at or below 95°F
- 7. Keep car under 95°F
- Do not deplete power of battery beyond ignition start

Block Diagram: Overview


Block Diagram: Sensing

- Requirements
 - Detect the presence of life in the car
 - Baby in front or rear facing car seat
 - Detect car temperature over 95°F
 - Communicate to controller
 - Controller enable sensors to be on/off
 - Send sensors data to controller
 - Send temperature to controller


Block Diagram: Power

- Requirements:
 - Input power from car battery 12V
 - Step down voltage required for
 - Sensors
 - Controller
 - Alert Subsystem
 - Up to an hour of runtime without draining battery

Block Diagram: Car Interface

- Requirements:
 - Controller communicates to car interface
 - Roll up/down windows
 - Turn on/off fans
 - Turn on/off car and AC together
 - OBD Port
 - Status of car on/off and in park

Block Diagram: Microcontroller

Requirements:

- Low power (sleep mode)
- Reliability
- Sufficient interfaces

```
if(car_is_off)
    read_sensors()
    if(temp > threshold && infant_present)
        roll_down_windows()
        activate_fans()
        alert_owner()
```

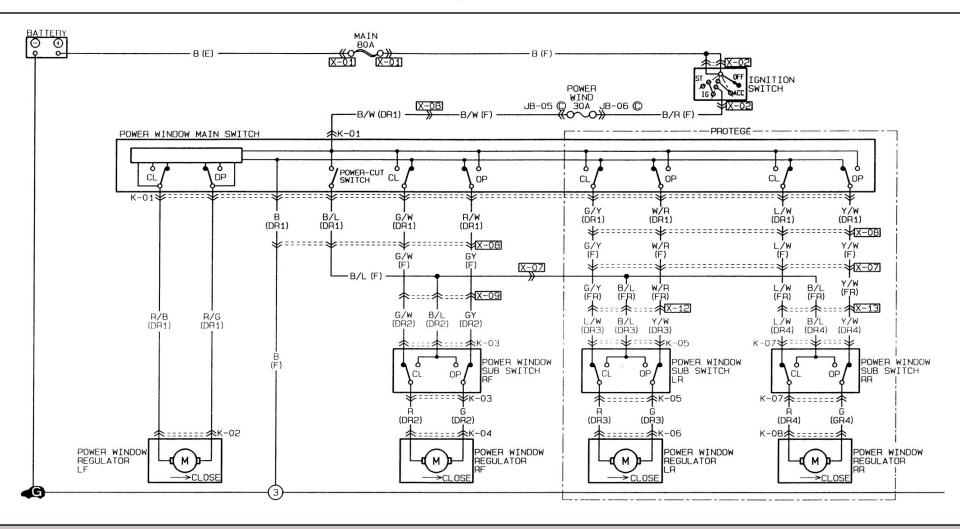

Block Diagram: Alert

- Requirements:
 - Reliability
 - Easy to integrate
- SIM card
 - Data plan (\$)
 - Carrier (maximize service area coverage)

- 3G modem with 2G fallback
- 850/1900 MHz bands
- TCP/IP stack
- UART interface to main microcontroller

Cost Analysis (Estimated)

Microcontroller	\$80
OBD Reader	\$25
Ublox SARA U260	\$30
Phone plan	\$30
Pressure sensor	\$50
Motion Sensor	\$15
Thermal Sensor/Camera	\$50-200
Temperature Sensor	\$20
Total	\$300-450


Proposed MDR Deliverables

- Sean+Kevin+George: Demonstrate reading of sensors using microcontroller development board
 - Temperature, motion, pressure(weight)
 - Optional: Thermal imaging, A/C output
- Kevin: Demonstrate sending of SMS messages using 3G modem development board ✓
- George+Amer: Demonstrate 12V outputs to mock window/fan motor ✓
- Amer: Demonstrate that the system can be embedded in a real car

UMassAmherst Thank You

Questions?

Power Windows: Wiring

Works Cited

- 1. http://www.mayoclinic.org/diseases-conditions/ heat-stroke/symptoms-causes/syc-20353581
- 2. https://www.accuweather.com/en/weather-new-s/heat-heightens-car-temperature/15305637
- 3. https://www.thespruce.com/what-is-too-hot-for-dogs-3975543