ALAN

Final Project Review

Child Alert and Rescue System (CARS) April 20, 2018

Department of Electrical and Computer Engineering

Advisor: Professor Ciesielski

Who We Are

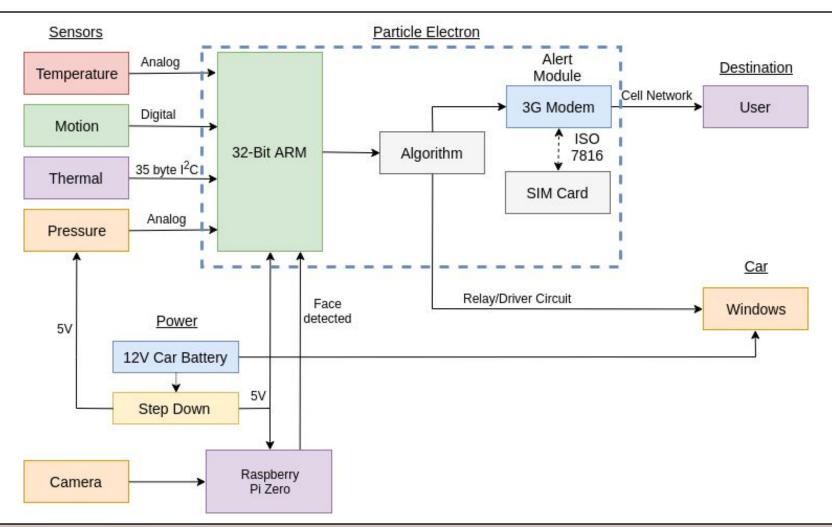
Amer Becirovic (EE)

Sean Danielson (EE)

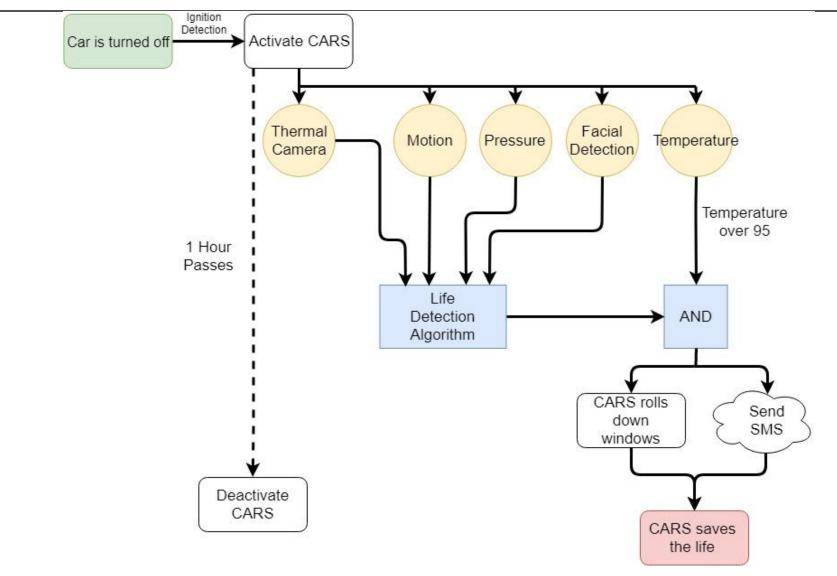
George Bayides (EE)

Kevin Ford (CSE)

Problem


- Every year, people all over the world forget their children or pets inside of a hot vehicle
- These children and pets die because they undergo heat stroke without any relief
- Our team is creating a system to prevent hot car deaths

System Specifications


- 1. Measure temperature in a car
- 2. Detect if child is in the car
- 3. Integrate alert system with cellphone
- System should be compatible with most sedans (target manufacturer level)
- 5. Easy installation for a mechanic/auto electronics expert
- 6. Must take action to cool car at or below 95°F*
- 7. Keep car under 95°F*
- 8. Do not deplete power of battery beyond ignition
 start *demonstrated at 70°F due to weather conditions

Block Diagram: Overview

Department of Electrical and Computer Engineering

Logic Flow Diagram

Sensor Analysis

			-								
Sensor	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Success Percentage
Motion	1	1	×	1	1	1	1	1	1	1	90%
Pressure	1	1	1	1	1	1	1	1	1	1	100%
Thermal	1	1	1	×	1	1	1	1	1	1	90%
Face	×	×	1	1	×	1	1	1	1	1	70%

- Issue: Facial detection restricted by camera viewing angle
- Average Success
 Percentage: 87.5 %

Life Detection

 Sensor combinations dictate what action is taken

 Which action to take is informed by individual sensor reliability

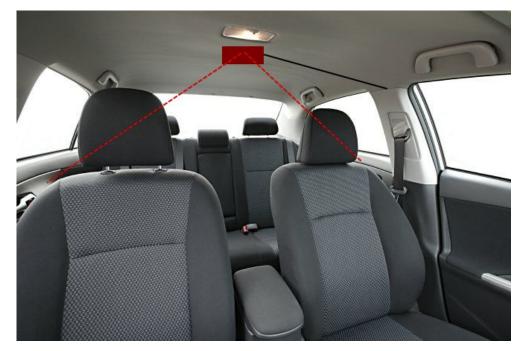
Thermal	Pressure	Face	Motion	Action
0	0	0	0	x
0	0	0	1	Text User
0	0	1	0	x
0	0	1	1	Roll Windows & Text
0	1	0	0	x
0	1	0	1	Roll Windows & Text
0	1	1	0	Text User
0	1	1	1	Roll Windows & Text
1	0	0	0	x
1	0	0	1	Text User
1	0	1	0	Text User
1	0	1	1	Roll Windows & Text
1	1	0	0	x
1	1	0	1	Roll Windows & Text
1	1	1	0	Roll Windows & Text
1	1	1	1	Roll Windows & Text
	•			

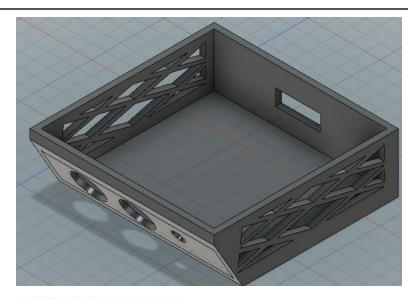
Thermal Camera Algorithm

Facial Detection - Update

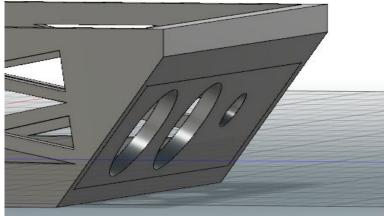
- New Wide Angle Camera
- No image transfer too long delay, not very useful
- Binary signal sent to Particle
- Bash script to shutdown automatically

Specification:


- Fully Compatible with Both the Model A and Model B Raspberry Pi
- 5 MP Omnivision 5647 Camera Module
- Still Picture Resolution: 2592 x 1944
- Viewing angle: 160 degrees
- Camera angle: Size can be replaced
- Video: Supports 1080 p @ 30 fps, 720 p @ 60 fps and 640 x480 p 60/90 Recording 15-pin MIPI Camera Serial Interface
- Size: Approx. 25 x 24 x 9 mm /0.99 x 0.95 x 0.36 inch


Component Placement

- Roof Box
 - Motion sensor
 - Thermal camera
 - Temperature sensor
 - Pi + Pi camera
 - Particle Electron
- Seat
 - Pressure pad



- Driver's side door
 - Relays

Roof-Mounted Box - Updated

- New Additions
 - 60° viewing angle for optimal sensor vision
 - Side venting to dissipate component heat
 - Rear connector port

Power Calculations - Real System Measurements

- Car battery power: 70 Ah * 12 V => 840 Wh
- Current delivered while system is active (controller+sensors+all windows rolled down): 12.450 A
 - Tells us the car battery can provide this power for about 5 hours and 45 minutes
 - However, we will only be pulling this much current for about 5 seconds
- Most of the time, our system will be in a passive mode, (microcontroller in sleep mode) drawing: 0.03 A * 12 V => 0.36 W
 - So, really the system can stay in sleep for about 97 days

Design Challenges

- Raspberry Pi
 - Has no power management hardware must be managed in software
 - Camera range not wide enough
- Heat Dissipation
 - Heatsink too hot made new heatsink
 - Heatsink began affecting temperature insulation needed

FPR Deliverables

- Fabricate PCB and implement in roof box \checkmark
 - Amer & Sean
- Testing and refinement of life detection algorithm
 - George & Kevin
- Clean up and hide car wiring as much as possible ✓
 - Amer
- Power Optimization
 - All members
- Optional: Install 4 additional relays to roll windows back up
 - All members

Cost Analysis - Updated

Device	Cost
Thermal Sensor	\$50
Pressure Sensor	\$10
Harness	\$14
Power Feed Cable	\$15
Microcontroller	\$70
Relays	\$12
Motor	\$8
Motion Sensor	\$10
Sonar Sensor	\$8
Velcro	\$11
Circuit Breaker	\$11

Device	Cost
Pi + Camera	\$48
Fuses (5)	\$12
Better Camera	\$20
Power Feed Cable	\$15
Replacement Thermal	\$53
РСВ	\$78
New Pi Camera	\$37
Total	\$466

*All values are rounded up

Department of Electrical and Computer Engineering

Thank You

Questions before demo?

Demo

Let's go outside!

Department of Electrical and Computer Engineering