Preliminary Design Review

Stride October 20, 2017

Department of Electrical and Computer Engineering

Advisor : Professor Tessier

Group Members

Advisor Prof. Tessier

Richie Hartnett CSE

Joe Menzie CSE

Jarred Penney EE

Jack Higgins EE

Department of Electrical and Computer Engineering

Advisor : Professor Tessier

What is the Problem?

- Parkinson's Disease (PD) makes walking challenging
- Physical therapy and other treatments are expensive
- Limited inexpensive methods of monitoring exercises outside of clinical environment

Problem Specifics

- Parkinson's Disease affects close to 10 million people worldwide and 1 million Americans^[1]
- Gait training exercises require professional feedback to ensure proper form
- Insurance usually only covers 2-3 sessions a week

[1] http://www.pdf.org/parkinson_statistics

Problem Specifics (Cont.)

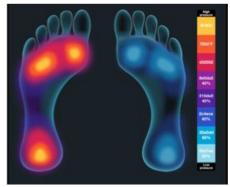
- Many gait training exercises can be done in the home
 - No professional feedback
 - Development of bad habits
- Not enough therapy for patient to effectively progress in training

Design Alternatives

SafeGait

- Harness that allows 360 degree motion
- Therapist can alter settings to increase/decrease harness support given
- No data collected on walking form

http://safegait.com/360-balance-mobility-trainer/


EksoGT

- Robotic exoskeleton
- Assists patients who lack lower body strength to walk independently
- Costs \$70,000

http://eksobionics.com/eksohealth/products/

Design Alternatives

TrainRite

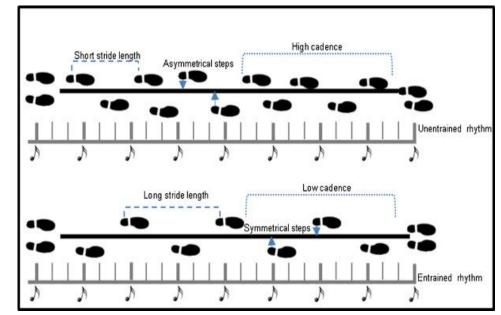
- Pressure sensitive shoe insole
- Measures weight distribution of the feet
- Provides no real-time feedback

http://www.ecs.umass.edu/ece/sdp/sdp16/team11/bobbobbob.my-free.website/in dex.html

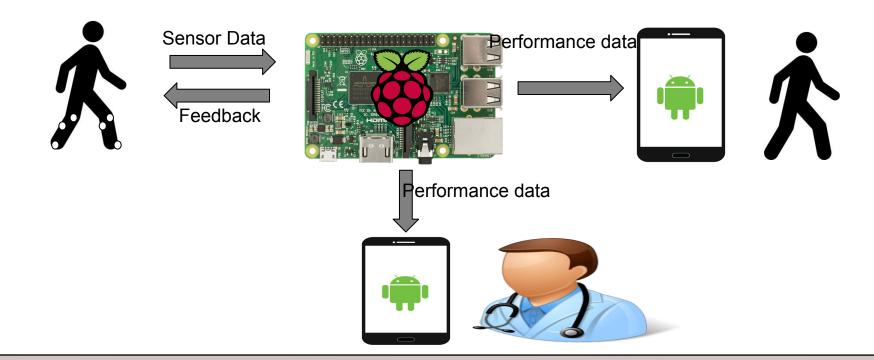
XSENS

- Wearable sensors that analyze walking form
- Relay information to software application

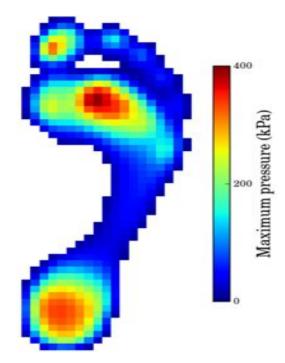
 Displays 3D image of patient
- No real-time feedback to stimulate neuro training


https://www.xsens.com/tags/gait-analysis/

What is Stride?


- Low cost array of wearable sensors that collects body movement information, designed for those with Parkinson's Disease
- Provide real-time feedback and track long term performance progress
- Used in home as well as in clinical environment

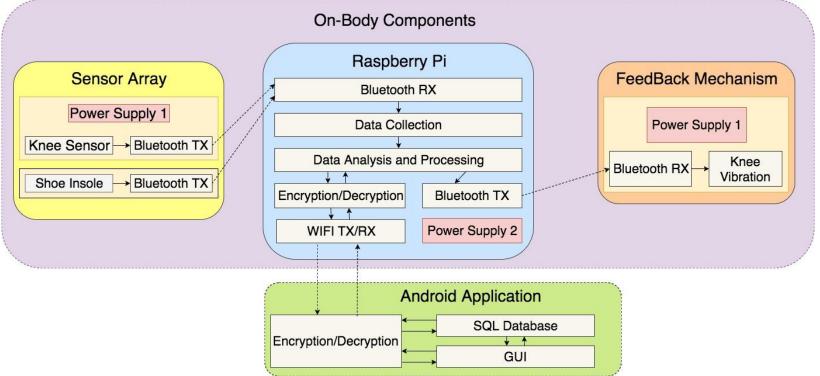
Parkinson's and Gait


- Parkinsonian gait characteristics
 - "Shuffling"
 - High cadence
 - Flat-footed steps
 - \circ Freezing

How It Works

Data Analysis

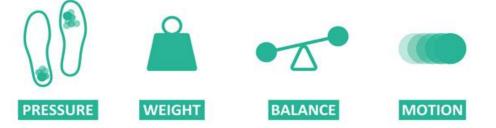
- Establish base cases
- Incorporate algorithms to convert sensor data to meaningful metrics
- Determine what data triggers feedback

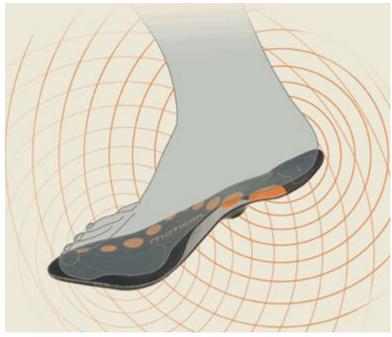

Inputs and Outputs

Specifications

- Feedback
 - Real-time performance feedback < 10 ms
- Metric Calculations
 - Within 10% error of Qualisys Oqus Motion Capture System measurements (in UMass Human Motion Lab)
- Physical Specs
 - Knee sensor system < 1 pound
 - Waist clip (Raspberry pi + power supply) < 1 pound
- Battery Life
 - 2 hours

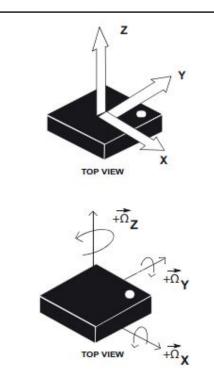
Block Diagram




Feedback Mechanism

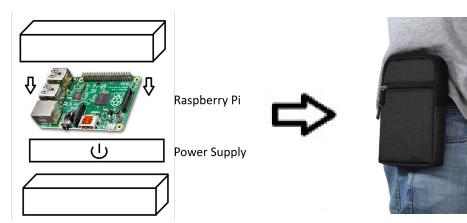
- Real-time Feedback
 - Lets patient know when form is incorrect without physical therapist
 - Form can be corrected on spot during home therapy
- Neuro training
 - Muscle monitoring/muscle checking solution
 - Benign vibrations on each leg
 - Help train patient to walk with correct form
- Three Vibration settings
 - No vibration, form is within proper range
 - Slight vibration, form is just outside of proper range
 - Full vibration, form is outside of proper range

Insole Specifications


- Sensor based insole
 - Measure heel to toe motion of individual feet
 - Measure individual's weight distribution between feet
- Data collected by Insole:
 - Heel to toe to prevent patient from becoming flat footed
 - Weight distribution to detect "freezing"

Body Sensors Specifications

- Sensors worn on knees
 - Measure acceleration of limbs
 - Measure angle at which the joints bend to correct form
- Inertial Measurement Unit (IMU) Sensor System
 used to determine data
 - Accelerometer and Gyroscope used to determine cadence and stride length


FLORA 9-DOF

- VDD range (2.4-3.6 V)
- 9 DOF IMU
 - 3D Accelerometer
 - 3D Gyroscope
 - 3D Magnetometer
- 16-bit data output
- Small size and weight
 - 16 mm diameter
 - .8 mm thickness
- Easily mounted

Mechanical Design

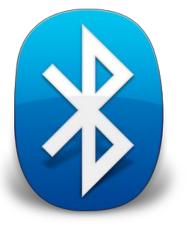
- Knee Sleeve
 - Sensor will be on front
 - Wired to small pcb in pocket on back
 - Rechargeable power supply also in back pocket
 - Feedback vibrator on inside of knee

- Waist Clip Box containing:
 - Raspberry Pi
 - Power Supply

User Interface

- Android Application for phone and tablet
- Display and track statistical information
- Separate types of accounts
- Allows for in-home monitoring
- Program/Assign Simple Workouts

Data Processing and Storage

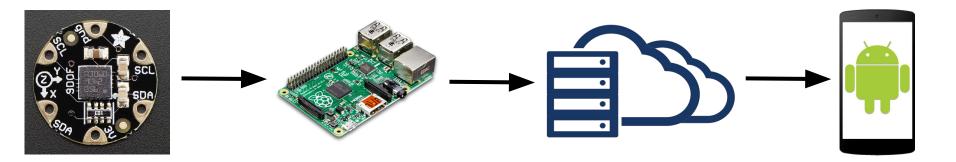

Processing

- Sensors
- Raspberry Pi
- Bluetooth 4.1
- ARM v8 Processor


Storage

- SQL database
- Cloud Server

Data Processing and Storage Diagram


Proposed MDR Deliverables

• Knee sensor

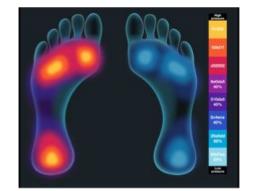
• Raspberry Pi

Cloud Server

• Android Application

Individual Roles Moving Forward

- Richie Team Leader, Software Application, Data Storage
- Joe Hardware/Software Interfacing
- Jack Mechanical Design and PCB Design
- Jarred Data Processing and Analysis, Sensor Programming


Thank You

Questions?

Former SDP Projects

TrainRite

- Pressure sensitive shoe insole
- Measures weight distribution of the foot
- Monitors form when weight lifting to avoid injury

SWAG

- Pressure sensitive shoe insole
- Measures weight distribution of the foot
- Monitors walking form to assist with gait training