Midway Design Review

Stride December 8, 2017

Department of Electrical and Computer Engineering

Advisor : Professor Tessier

Group Members

Advisor Prof. Tessier

Richie Hartnett CSE

Joe Menzie CSE

Jarred Penney EE

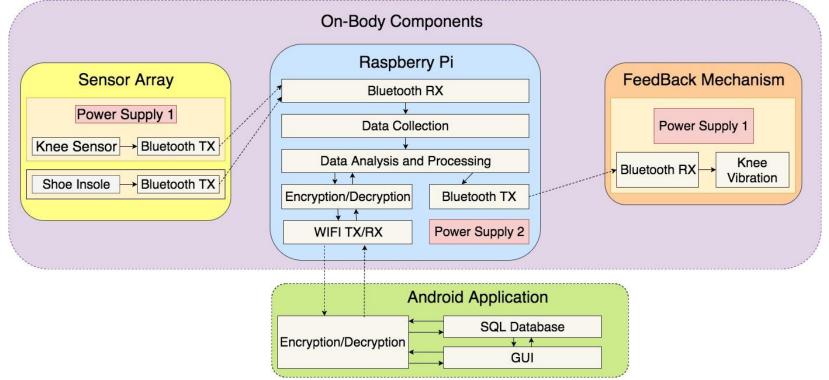
Jack Higgins EE

Department of Electrical and Computer Engineering

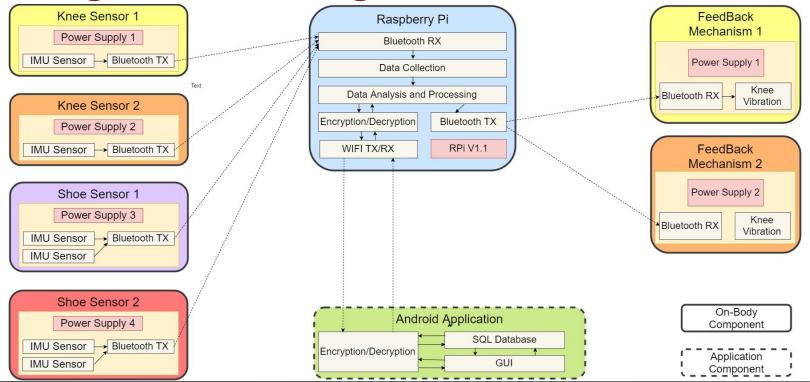
Advisor : Professor Tessier

What is the Problem?

- Parkinson's Disease (PD) makes walking challenging
- Physical therapy and other treatments are expensive
- Limited inexpensive methods of monitoring exercises outside of clinical environment

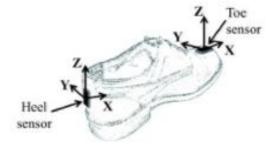

What is Stride?

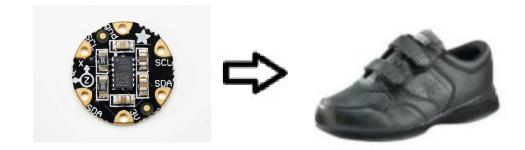
- Low cost array of wearable sensors that collects body movement information, designed for those with Parkinson's Disease
- Provide real-time feedback and track long term performance progress
- Used in home as well as in clinical environment


System Requirements

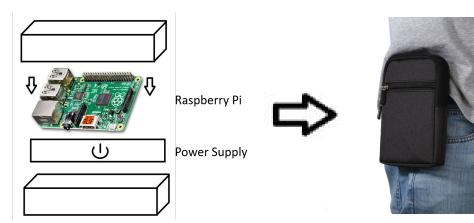
- Accurately collect movement data to appropriately monitor an individual's:
 - Stride length (Within 10% error of Qualisys Oqus Motion Capture System measurements)
 - Cadence
 - Heel-to-toe motion
 - Freezing
- Provide real-time feedback to correct stride length during exercise (less than 100ms)
- Store and display data Android application to track long term patient progress
- Lightweight product that is easy for patient to put on
 - Sensor systems < 1 pound
 - Waist clip (Raspberry Pi + power supply) < 3 pounds
- Sensor systems and Raspberry Pi will have battery life of greater than 2 hours

Previous Block Diagram




Redesigned Block Diagram

Mechanical Design- Shoe Sensor

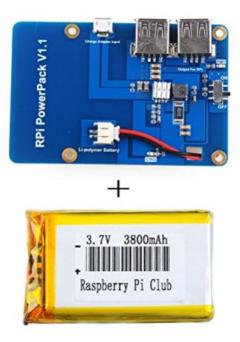

- Easy to put on velcro shoe
- A sensor will be secured on front and rear of each shoe
- Wired to smaller PCB secured on outside of shoe

Mechanical Design- Knee and Belt

- Knee Sleeve
 - Sensor will be on front
 - Wired to small pcb in pocket on back
 - Velcro Strapped for ease of putting on
 - Feedback vibrator on inside of knee

- Waist Clip Box containing:
 - Raspberry Pi
 - Power Supply

PCB Design


- PCB
 - Atmega32u4
 - Processor inside Adafruit Feather
 - o nRF51822
 - Bluetooth Module inside Adafruit feather
 - Button Cell Batteries
 - 3V Button Cell batteries
 - 100mAh each
 - Feedback Vibrator

РСВ	Shoe	Knee Sleeve
Processor	Atmega32u4	Atmega32u4
Bluetooth	nRF51822	nRF51822
Battery	3V Button Cell	3V Button Cell
Vibration	none	Mini Vibration Motor
IMU	Yes, 2	Yes, 1

Power Source- Raspberry Pi

Raspberry Pi:

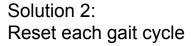
- RPi PowerPack V1.1
 - Rechargeable
 - 3.7V
 - o 3800mAh
 - Designed specifically for Raspberry Pi 3 Model B
 - "Last about 9 hours"

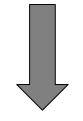
FLORA 9-DOF

- VDD range (2.4-3.6 V)
- 9 DOF IMU
 - 3D Accelerometer
 - 3D Gyroscope
 - 3D Magnetometer
- Small size and weight
 - 16 mm diameter
 - \circ .8 mm thickness
- Easily mounted


FLORA 9-DOF Programming

- Setting individual sensors
 - Enable/Disable degrees of freedom
 - Data rate: 100 Hz
 - Sensitivity levels: +/- 16 g's, 2000 dps
- Reading raw values
 - Read from output registers
 - 2 bytes for each reading (i.e. acceleration in x direction)
- Data Analysis
 - Convert raw values to meaningful data (m/s², degrees/sec)
 - More complex operations




Data Analysis

- Handling gyroscope "drift" and noisy accelerometer
 - Solution 1: Fuse measurements to compensate

Filtering: Complementary, Kalman

Filtering: Low Pass

Data Analysis (Cont'd)

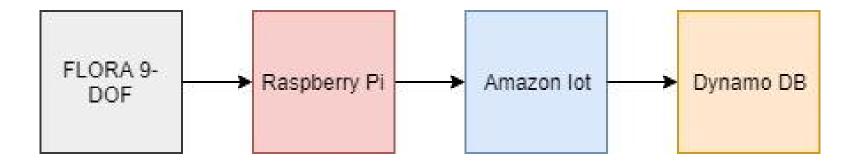
•	Calculating Parkinsonian performance
	metrics

- Displacement Method
- Joint Angle Method

	Measurements	Metrics
Knee IMU	Displacement, Joint angle, Segment inclination	Stride length, Cadence
Shoe IMU	Heel strike, Toe strike, Heel-off, Toe-off	Heel-to-toe weight distribution, freezing

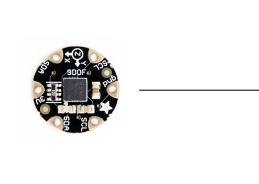
Table 1: IMU Measurements and Metrics

Neuro Training

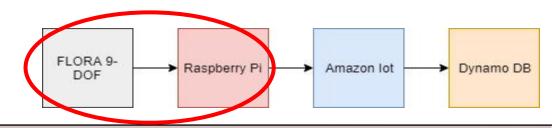

- Vibrations on knee to indicate stride length error
 - Patient-specific stride length threshold
 - Two levels of vibrations depending on severity of error (both benign)

- Auditory Cueing
 - Rhythms played via app to stimulate proper cadence
 - Recommended by a Neurological PT

Data Movement Diagram


Data Movement: Sensor to Raspberry Pi

- Python programming
- Continuously writes to file

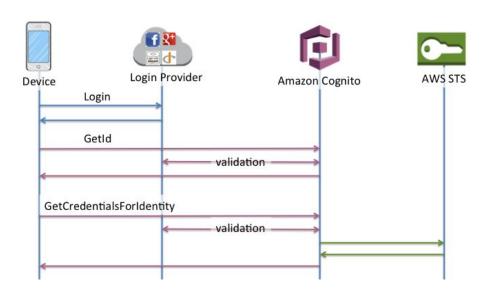

using I2C bus

• Will be done with

Data Movement: Raspberry Pi to Amazon Iot

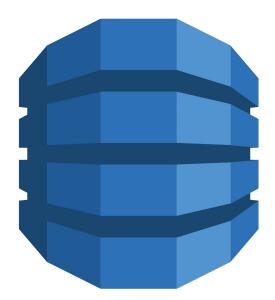
- MQTT
- dataTopic Dec 8, 2017 10:41:44 AM -0500 Export Hide JSON AWS IOT "sessionID": "1 49", "magnetometerz": "0.66", "accelerometer x": "-3.18", "user": "rhartnett", Amazon IoT "accelerometer z": "8.61", "magnetometer x": "0.26", "magnetometer y": "1.03", "gyroscope x": "-0.42", "gyroscope y": "2.03", "gyroscope z": "-7.84", "accelerometer y": "-2.02" message Subscriber MQTT message ----Broker Publisher message FLORA 9-Raspberry Pi Amazon lot Dynamo DB DOF Virtual channel Topic Subscriber

Data Movement: Amazon Iot to DynamoDB


FL

- Rules that react to Topics
- Permissions for Certified Users
- Sort/Range Keys

	Actions -
Overview	Description Edit
	Sends data from Raspberry Pi to private database
	Rule query statement Edit
	The source of the messages you want to process with this rule.
	SELECT * FROM 'dataTopic'
	Using SQL version 2016-03-23
	Actions
	Actions are what happens when a rule is triggered. Learn more
	Insert a message into a DynamoDB table Remove Edit > stride-mobilehub-1191655227-DataTable
A 9-	Raspberry Pi Amazon lot Dynamo
F	


Application Backend

- Used AWS Mobile Hub to integrate backend with Android Application
- Created identity pools using Amazon Cognito to authenticate users
- Credential tokens are given to user to access other AWS services

Application Backend (Cont.)

- Created DynamoDB Table to store session measurements
- DynamoDB is a NoSQL database
- Data table contains:
 - Username
 - Session Number
 - Measurement Number
 - Measurement Data

Application

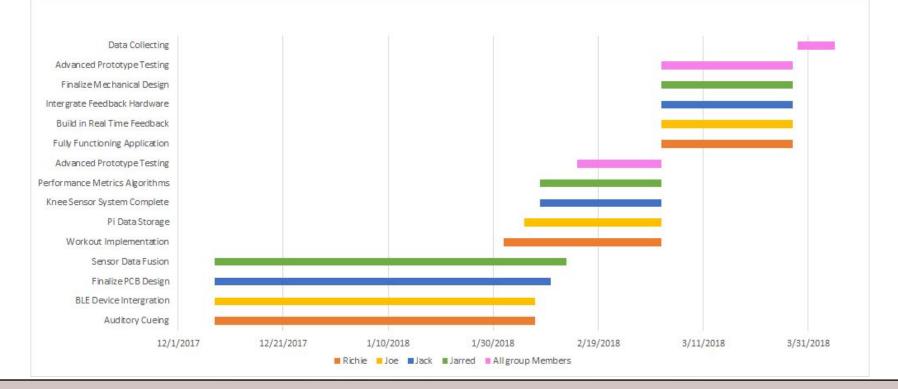
3			108 🖻 👑
Stride			
Measurment	Х-А	xis Y-	Axis Z-Axis
1	-851	719	811
2	-845	711	785
3	-830	715	827
4	-851	715	809
5	-858	719	794
6	-848	717	812
7	-851	717	806
8	-850	717	804
9	-850	729	809

- Android application designed in Android Studio
- Amazon user authentication
- Retrieves session data from DynamoDB database
- Contains 3 pages
 - Session page
 - Sensor page
 - Data page

Proposed MDR Deliverables

MDR Deliverables

- Have single knee sensor operating and recording data \checkmark
- Having bluetooth transmitter on a breadboard relaying the information. Raspberry Pi receiving bluetooth transmission.
- Routing the data through the Raspberry Pi and transmit it over WIFI to Amazon cloud server to be store in a NoSQL database
- Android application retrieves data from database and displays it on a basic GUI \checkmark


In general, have a pipeline throughout our system with which we'll be able to use as foundation to build out the rest of our project.

Proposed CDR Deliverables

UMassAmherst

- Complete design of knee sleeve with functional IMU and PCB (no feedback)
 Completed data analysis
- Functioning prototype of shoe with no data analysis
 Data passed through the pipeline of system
- Simultaneous bluetooth connection between IMU systems and Raspberry Pi
- Implement auditory cueing on Android Application and exercise programming

Gantt Chart

Individual Roles Moving Forward

- Richie Team Leader, Android Application, Data Storage
- Joe Data Transmission, Hardware/Software Interfacing
- Jack Mechanical Design and PCB Design
- Jarred Data Processing and Analysis, Sensor Programming

Thank You

Questions?