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Abstract— We introduce ROMO (Robotic Mower), an 

autonomous lawn mower that will allow users to relax 

while a robot mows their lawn for them. The system 

uses real time kinematic GPS to precisely position 

itself within the user’s lawn. It turns by varying the 

speed of its two rear drive wheels allowing it to mow 

into corners. 

I.     Introduction 

                The average American spends about 70 hours a 

year on lawn care, according to the American Time Use 

Survey. [1] This time, considered to be a chore, could be 

spent more productively on other tasks. Additionally, 

there is a level of physical effort required to operate a 

standard push lawn mower and can result in injuries 

especially to the lower back. If a person does not possess 

the physical ability to mow, they are left with two options, 

purchase an expensive riding mower, or pay for a lawn 

care service. There currently exist several autonomous 

lawn mowers on the market. The problem with this 

solution is that they cost anywhere from $1000 to 

$3000[2], require time consuming setup, and have poor 

battery life, requiring multiple charges to move a lawn. 

Similarly, a lawn care service can cost approximately 

$1000 per year. 

Our system requirements have been developed 

based on the requirements of an average consumer. As 

such we have determined that the mower should be able 

to mow a 1500 sq. ft. lawn on a single battery charge. The 

optimum speed for mowing a lawn is 2.5 to 3.5 miles per 

hour. [3] As such we have targeted a mowing speed of 3.5 

mph. In order to mow the lawn with a hypothetical 12-

inch blade we have determined that we need to be able to 

resolve the relative position of the mower with an 

accuracy of 5cm or better. In order to simplify the initial 

design, we are assuming a rectangular, level, obstacle free 

lawn with a known starting position. 

Requirement Specification 

Lawn Area 1500 sq. ft. 

Mowing Speed 3.5 +/- 1.0 mph 

Battery Life 1 charge = 1500 sq. ft.  

Position Accuracy Better than 5cm 

Table 1: List of System Requirements and Specifications. 

 

II.     Design 

A.     System Overview 

Our initial approach to system design was to 

focus on our positioning system as we believed that it 

would be the most challenging aspect of the project. As 

mentioned we need a high level of both accuracy and 

precision in our positioning system. However, because of 

the locality of a lawn it is not necessary to know this 

position relative to global coordinate systems. Instead it 

may suffice to know the precise position of the rover 

within the locality of the lawn. Given this it is still 

necessary to have a reference position from which the 

rovers position will be known. In our system that 

reference point is a stationary base station. 

Figure 1: RoMo Block Diagram 

The system used to measure the relative position 

of the rover relative to the base station is an advanced 

form of GPS known as Real Time Kinematic (RTK) GPS. 

This form of GPS uses measurements of the phase of the 

GPS carrier signal at multiple receivers to determine the 

relative position of the receivers. [4,5] In our system the 

base station generates measurements with are forwarded 

to the rover where they are used to calculate the 

displacement between the base station and the rover. 

The GPS system also has limitations. Firstly, it 

only updates position once per second. [4,5] Given the 

prescribed mowing speed the rover would travel 1.5 

meters between updates. This may be acceptable for long 
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strait paths however it is not acceptable when making 

turns. Furthermore, a connection between the base station 

and rover must be maintained continuously for the GPS 

system to function correctly. [4,5] If the connection was 

interrupted the rover would have no way to correct its 

position. 

Given the above limitations of the GPS system it 

is necessary to augment its output between updates. This 

is accomplished using a dead reckoning system. The dead 

reckoning system uses measurements from a gyroscope as 

well as measurements of wheel speed. The gyroscope 

generates a measurement of yaw in degrees per second. [6] 

Integrating this measurement allows for the determination 

of the current heading. The wheel speed measurement 

determines the linear speed. Together this allows us to 

integrate the velocity vector to a displacement between 

GPS fixes. The advantage of this system is that the update 

rate of the wheel speed and yaw rate measurements are 

much higher allowing for the position to be determined 

between GPS updates.  

As mentioned there is a need for a connection 

between the base station and the rover for the GPS system 

to function properly. This connection must be maintained 

continuously and must simulate a serial port operating at 

57,600 baud. [4,5] Given these requirements it was 

proposed to used Wi-Fi to complete this connection. It 

was believed that Wi-Fi___33 would offer a stable proven 

connection between the base station and rover. 

In order to traverse the lawn there must be some 

physical rover capable of locomotion within a 2-

dimensional plane. In order to accomplish this a wood 

platform with three wheels was chosen. At the rear of the 

platform two drive motors were mounted which have built 

in encoders to determine wheel speed. At the front of the 

platform a steering wheel was mounted. This wheel can 

be rotated as it is mounted on an axle connected to a 

traditional RC servo motor. The drive motors are driven 

with Pulse Width Modulation (PWM) at 12V. The RC 

servo is supplied 9V and a control signal at 5V.  

The above systems are useless without a 

computing system to run them. In order to simplify the 

software aspect of the project a two-component solution 

was chosen. A Pine A64 acts as the primary computer. It 

has a quad core processor and runs Linux. [7] A PSOC 5LP 

microcontroller is used as a real time processor to decode 

input signals and generate control signals. This setup 

allows the use of the best of what both technologies offer. 

The combined environment has the real time hardware 

capabilities associated with microcontrollers; along with 

the processing power and multithreaded capability of full 

size computers.  

In order to power all of these systems a 

somewhat complex power distribution system is 

necessary. The rovers power system consists of two 

batteries and a buck converter. Additionally, there is 

another buck converter on the Pine A64. Overall there are 

4 different supplies accessible on the rover. The base 

station has one battery and one linear voltage regulator. 

B.     RTK GPS System 

Our requirement for the GPS system is to be able 

to determine the mowers differential position from the 

base station within 5 cm. Traditional GPS receivers are 

simply not accurate enough for this purpose. The 

extension of traditional GPS positioning that enables this 

level of position is known as real time kinematic GPS 

(RTK). Traditional GPS receivers calculate their position 

using the code information transmitted by multiple GPS 

satellites. [8] RTK GPS differs in that it uses the 

measurement of carrier phase. [8] This measurement leaves 

several unknown variables. These are the receiver clock 

offset, the satellite clock offset, the hardware biases, and 

the number of wavelengths between the satellite and the 

receiver.[7] If the carrier phase measurement is taken in 

two locations the first two unknown variables cancel 

leaving only the number of wavelengths between the 

satellite and receiver unknown.[8] By fixing these at an 

integer number it then becomes possible to calculate the 

differential position between the two receivers[8] If one of 

these receivers is in a fixed location the position of a 

mower in reference to this location becomes known. 

The implementation of RTK GPS we are using 

consists of two SkyTraq S2525F8-GL-RTK RTK capable 

GPS receivers connected via a wireless link. The base 

station has a GPS module with outputs connection data 

via a serial port running at 57,600 baud. [4,5] This data is 

transmitted via a wireless link to the mower where it is 

input to the mower’s GPS receiver. The GPS receiver on 

the mower uses its own measurements as well as those 

from the base station to calculate its position relative to 

the base station. [4,5] The RTK receivers we are using are 

rated for “1cm+1ppm” accuracy. [13] This equates to 

accuracy relative to the base station of better than 2cm 

when within 10km of the base station. The mowers GPS 

module outputs the differential position over another 

serial port running at 115,200 baud to the Pine A64 up to 

once per second. [4,5] Results from a static test can be seen 

in figure 2. This shows the drift over 300 samples or 5 

minutes is less than 2cm.  



 

Figure 2: GPS Position over 5 Minutes 

On board the Pine A64 incoming data is fed into 

a circular buffer. Then the ends of the messages are 

determined, and they are parsed into usable data. This 

parsed data is then timestamped and stored in a common 

data storage area to be used by other software 

components, namely the dead reckoning system. 

C.    Wireless Link 

The wireless link was implemented on two 

NodeMCU 1.0 devkits, each containing an ESP8266 

wireless module.[9,10] Websockets were chosen as the 

method of data transfer due to the high latency 

provided.[11,12] Websockets allow real-time transfer of data 

through TCP connections that are kept open, eliminating 

the overhead of establishing a connection every time data 

is to be transferred.[11,12] The NodeMCU attached to the 

mower is configured as a WebSocket server, and the 

NodeMCU comprising the base station along with the 

other GPS antenna is configured as a WebSocket client. 

The server establishes a wireless access point upon 

application of power and waits for a connection request 

from the client. The client when powered, continuously 

pings for the server’s access point, and initiates a 

connection upon receiving a response.  

Once the connection is established, any UART 

data that arrives to the serial port of the client NodeMCU 

is converted to binary data and sent over the wireless 

access point to the server NodeMCU, which reformats the 

binary data to UART and outputs it from the serial port on 

the server to the GPS module on the mower via cable. 

While we were successfully able to implement this 

system, it was not able to provide the latency or reliability 

required to function correctly. This was determined to be 

due to the strength of the wireless provided by the 

ESP8266 when operated without an intermediate router. 

Further, we determined that using an external router 

would not solve to issue. The reason for working with a 

self-contained system was so that the user would not be 

required to move their wireless router outside each time 

they wished to mow their lawn. Overall, the ESP8266 was 

found to be more suitable for applications not requiring 

100% successful, real time packet transfer, such as 

temperature and humidity monitoring. When attempting 

high speed repeated transfers, the system drops packets. 

Further, the SDK only provides closed source binary 

libraries so using the modem without the Wi-Fi protocol 

is impossible. [12] 

D.     Gyroscope Control System 

The gyroscope control system consists of both 

hardware and software components. The hardware aspect 

of the system is a Bosch BNO055 IMU which is 

connected to the Pine A64 computer via UART at 

115,200 baud. [6] The software control runs on its own 

thread and retrieves the yaw measurement from the 

gyroscope in a signed integer format up to 100 times per 

second. [6] This information is then converted into a 

floating-point value in degrees per second. This value is 

then continuously integrated to give a relative heading 

since system start. (Equation 1) This value is then 

timestamped and exported to a common storage area for 

use by other parts of the system, namely the dead 

reckoning system. 

𝜃𝑡 = 𝜃𝑡−1 + Δ𝜃𝑡 ∗ Δ𝑡 (1) 

E. Wheel Speed Sensing 

 In order to determine the speed of the wheels of 

the mower we selected motors which have built in 

encoders. Each encoder generates 64 pulses per 

revolution. [13] Given the operating speed this means that 

there will be a maximum of 11,733 pulses per second. 

Such high speed makes in impractical to decode the 

signals using interrupts and software. This led to the use 

of the microcontroller with a hardware quadrature 

decoder, the PSOC. The PSOC is interfaced with the Pine 

A64 computer via UART at 115,200 baud. The software 

running on the Pine A64 requests the current decoder 

value over UART and the 32-bit value of each of the 

hardware decoder registers is returned. [14] The difference 

in position over time is then taken. This measurement of 

counts per second is then converted into a floating-point 

value of revolutions per minute. (Equations 2-3) The 

RPM value measured from each wheel is then 

timestamped and exported to a shared area for use by 



other parts of the system, namely the dead reckoning 

system. This is repeated at 30Hz. 

𝐶𝑃𝑆 =  
𝜅𝑡 − 𝜅𝑡−1

Δt
(2) 

𝑅𝑃𝑀 =
𝐶𝑃𝑆

32
(3)  

F.     Dead Reckoning System 

The GPS system alone is not capable of 

providing the positioning information necessary to follow 

a path through the lawn. In order to augment this a dead 

reckoning system was constructed. It takes information 

from the GPS system, the gyroscope, and wheel speed 

sensors to allow for positioning updates at a much greater 

rate, up to 30Hz. Additionally, under certain conditions 

the GPS information may be inaccurate. An example of 

this is that GPS heading is calculated as the direction from 

the previous point to the current point. In a turn this may 

not be equal to the true direction of travel. In order to 

prevent this the dead reckoning system uses the last three 

GPS positions and only considers the GPS position valid 

when the second derivate of position is close to zero. That 

is the north and east velocity vectors are constant. This 

allows the dead reckoning system to reject inaccurate 

GPS heading information when negotiating turns.  

In order to update position between accurate 

GPS fixes the gyroscope and wheel speed data are 

utilized. The wheel speed allows for the determination of 

linear speed given the known wheel diameter of 100mm. 

[15] When an accurate GPS heading is received the current 

heading from the gyroscope is saved. Every time there are 

updated values from both the gyroscope control system 

and the wheel speed sensing system the dead reckoning 

system determines the new heading and speed and 

integrates this velocity vector to determine the new 

position. (Equations 4-9) 

𝜃𝐺𝑌𝑅(0) = 𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑎𝑡 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑖𝑑 𝐺𝑃𝑆  𝑢𝑝𝑑𝑎𝑡𝑒 

𝜃𝐺𝑃𝑆(0) = 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑖𝑑 𝐺𝑃𝑆 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 

𝑃𝑁𝑜𝑟𝑡ℎ(0) = 𝑁𝑜𝑟𝑡ℎ 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑖𝑑 𝐺𝑃𝑆 𝑓𝑖𝑥 

𝑃𝐸𝑎𝑠𝑡(0) = 𝐸𝑎𝑠𝑡 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑖𝑑 𝐺𝑃𝑆 𝑓𝑖𝑥 

𝑅𝑃𝑀𝑎𝑣𝑔 = 𝑤ℎ𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑤ℎ𝑒𝑒𝑙𝑠 

 

𝑉𝑤ℎ𝑒𝑒𝑙 =  
𝑅𝑃𝑀𝑎𝑣𝑔 ∗ 0.1 ∗ 𝜋

60
 (

𝑚

𝑠
) (4) 

𝜃(𝑡) =  𝜃𝐺𝑃𝑆(0) + (𝜃𝐺𝑌𝑅(𝑡) − 𝜃𝐺𝑌𝑅(0)) (5) 

𝑉𝑁𝑂𝑅𝑇𝐻(𝑡) = 𝑉𝑙𝑖𝑛 ∗ 𝐶𝑜𝑠(𝜃(𝑡)) (6) 

𝑉𝐸𝐴𝑆𝑇(𝑡) = 𝑉𝑙𝑖𝑛 ∗ 𝑆𝑖𝑛(𝜃(𝑡)) (7) 

𝑃𝑁𝑜𝑟𝑡ℎ(𝑡) = 𝑃𝑁𝑜𝑟𝑡ℎ(𝑡 − 1) + 𝑉𝑁𝑜𝑟𝑡ℎ(𝑡) ∗ Δ𝑡 (8) 

𝑃𝐸𝑎𝑠𝑡(𝑡) = 𝑃𝐸𝑎𝑠𝑡(𝑡 − 1) +  𝑉𝐸𝑎𝑠𝑡(𝑡) ∗ Δ𝑡 (9) 

G.     Motor Control 

The two motors at the back of the vehicle as well 

as the steering servo are driven by the motor control 

system. This system takes the outputs of the path 

following system and generates PWM signals. The 

commanded motors values are first retrieved from a 

common shared data area. Then they are converted into 

units for the PSOC microcontroller. The commands are 

then sent to the PSOC over a 115,200 baud UART link. 

The PSOC generates two PWM signals which drive low 

side switches (Figure 3) for each of the rear motors. The 

modulation range is from 0 to 100%. It also generates a 

PWM signal to the front steering servo. The angle of the 

steering servo is determined by the length which the pulse 

is high. The range is 1ms to 2ms high time. Lengths less 

than 1.5 ms turn to the left where widths greater than 

1.5ms turn to the right. [16] 

 

Figure 3: Low Side Schematic 

H. Path Following 

The function of the path following system is to adjust 

the steering angle in order to follow a predetermined path. 

In order to do this, it first imports the current position 

output of the dead reckoning system. It then determines 

the heading and range to the next position along the path. 

(Equations 10-13)  

𝑃𝑅𝑁 = 𝑁𝑜𝑟𝑡ℎ 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑅𝑜𝑣𝑒𝑟 

𝑃𝑅𝐸 = 𝐸𝑎𝑠𝑡 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑅𝑜𝑣𝑒𝑟 

𝑃𝑇𝑁 = 𝑁𝑜𝑟𝑡ℎ 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝑃𝑇𝐸 = 𝐸𝑎𝑠𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝜃𝐶𝑢𝑟 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑟𝑜𝑣𝑒𝑟 

𝑅𝑅𝑇 =  √(𝑃𝑅𝑁 − 𝑃𝑇𝑁)2 + (𝑃𝑅𝐸 − 𝑃𝑇𝐸)2 (10) 

𝜃𝑅𝑇 = atan (
𝑃𝑅𝐸 − 𝑃𝑇𝐸

𝑃𝑅𝑁 − 𝑃𝑇𝑁

) (11) 

 

 −180° < 𝜃𝑅𝑇 < 180° (12) 

𝜃𝑆𝑡𝑒𝑒𝑟 = 𝐶 ∗ (𝜃𝑅𝑇 − 𝜃𝐶𝑢𝑟), 𝐶 > 1 (13) 

The steering angle is determined from the heading error 

(𝜃RT−𝜃Cur) multiplied by a gain constant. Additionally, 

if the range to the point RRT is less than a constant this 

point is considered to have been passed through. If this is 



the case the next iteration of path following will use the 

next point along the path. This continues until the end of 

the path is reached at which point the rover will stop. 

 

Figure 4: Rover following a generated path 

The above figure (Figure 4) shows the function 

of the path following system as measured with the GPS 

system disabled. The orange dots are the path points 

starting at (0,0) which the rover is to follow. Looking at 

the diagram we can see some drift between (0,0) and (3,0) 

this is the result of backlash in the steering system. The 

backlash means that commanding a small steering angle 

may not affect the direction of travel of the rover. The 

overshoot seen around point (3,2) is cause by the limited 

turning radius of this prototype. 

I. User Interface and Control 

Users must be able to interact with the rover to 

make it function. This function is accomplished via Wi-

Fi. The rover runs a TCP command and control server on 

port 5555. The available commands are listed in table 2. 

Additionally, a basic client application was created for 

testing purposes which allowed easy execution of these 

commands via a graphical user interface. (Figure 5) 

Table 2: List of User Commands and Corresponding Functions 

 

 

 

Figure 5: Rover Graphical User Interface 

 

III.     Project Management 

Table 3: A list of FPR Deliverables and progress 

We managed to at least partially achieve all the 

goals we set for ourselves for FPR (Table 3), however 

there is still much work to be done to deliver a 

consistently functioning prototype. The development of 

RoMo was a bit of a rocky road. We managed to produce 

a prototype that was not tested to its full capabilities and 

embodies a tenuous definition of the word ‘functional’. 

This result was achieved largely due to conflicting 

schedules and lack of communication between members 

of our team. While we met with our advisor once a week, 

we did not meet nearly as often as a team although the 

frequency of our physical meetings increased as the 

project neared completion. There was friction between 

team members that resulted in the project not being fully 

tested and led to constant delays. We needed an external 

force to help hold team members accountable and aid in 

division of work. A team with varying skill levels and 

areas of talent, but little to no management or 

accountability via clear division of work wastes much 

effort in getting everyone on the same page or even 

Command Function 

Start, Begin following path from first 

point 

Stop, Disable path following, halt all 

motion 

Add_Point, 

displacement_north, 

displacement_east, 

Append point to end of stored 

path 

Clear, Clear stored path points 

Enable_Path, Enable the use of the stored path 

FPR Deliverable Progress 

Travel 40 ft in straight line Partial 

Travel 40 ft in 25 seconds or less Completed 

Perform a 90-degree turn Completed 

Return to starting position Partial 



getting team members to communicate or contribute to 

the project that could be spent advancing the project’s 

state.  

We also should have taken better advantage of 

external resources, such as technical experts to help us in 

challenging areas. We were unable to resolve the latency 

issues with our wireless link, not considering that there 

was a resident ESP8266 expert in M5. Aaron Stam was 

our team lead, lead programmer and tester, documentation 

and presentations second, and majority contributor. Kevin 

Moriarty was our programming and testing second, as 

well as being the lead for documentation, presentations, 

team communications, and the team website. Collin 

Timmerman constructed the RoMo chassis and mounted 

equipment, and Leonard Luchetti designed and ordered 

the H-Bridge PCBs which were modified for use in the 

demo day design. 

 

Figure 6: Gantt Chart Demonstrating Original Project Timeline 

 

IV.     Conclusion 

In the time since MDR, almost all of the actual 

development of our project occurred. The mower chassis 

was constructed, parts were mounted, the microcontroller 

and CPU were successfully programmed and then tested 

after several changes in hardware and software. The 

microcontroller is successfully able to read input signals 

from the motor encoders as well as the gyroscope output 

from IMU unit, allowing for limited path following, with 

only this functionality the mower is unable to perform 

course corrections, it can only navigate a set of 

coordinates under the assumption of limited error, this is 

of course impractical for real world use in an autonomous 

rover. The installed GPS system is meant to provide the 

inputs for course corrections, and the functionality is 

coded into the final prototype, however testing was never 

performed extensively with the system functioning and 

we have no tangible results to verify the mower’s ability 

to perform course corrections as of FPR. This lack of 

testing can be attributed to the lack of a working wireless 

link. The use of a wired connection between the base 

station and rover was attempted, however insufficient 

wire length lead to the rover dragging the base station 

behind it, eliminating any usefulness it may have added.  

  Future work would involve further testing and 

optimization as well as a redesign of the physical 

prototype to optimize weight distribution and install 

wheels better suited to grass, dirt, or similar surfaces. The 

problem of building a properly functioning wireless link 

for GPS correction data still remains. Appropriate 

hardware certainly exists that will resolve the latency and 

packet loss issues. Further exploration of the wireless link 

design could involve the use of a full-size computer 

hardware rather than low power IOT focused devices such 

as the original ESP8266. 

 

 VI. Appendix 

A.  Cost Analysis 
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