

Kevin Moriarty, CSE, Aaron Stam, EE, Collin Timmerman, EE, and Leonardo Luchetti, EE

Abstract— We introduce ROMO (Robotic Mower), an

autonomous lawn mower that will allow users to relax

while a robot mows their lawn for them. The system

uses real time kinematic GPS to precisely position

itself within the user’s lawn. It turns by varying the

speed of its two rear drive wheels allowing it to mow

into corners.

I. Introduction

 The average American spends about 70 hours a

year on lawn care, according to the American Time Use

Survey. [1] This time, considered to be a chore, could be

spent more productively on other tasks. Additionally,

there is a level of physical effort required to operate a

standard push lawn mower and can result in injuries

especially to the lower back. If a person does not possess

the physical ability to mow, they are left with two options,

purchase an expensive riding mower, or pay for a lawn

care service. There currently exist several autonomous

lawn mowers on the market. The problem with this

solution is that they cost anywhere from $1000 to

$3000[2], require time consuming setup, and have poor

battery life, requiring multiple charges to move a lawn.

Similarly, a lawn care service can cost approximately

$1000 per year.

Our system requirements have been developed

based on the requirements of an average consumer. As

such we have determined that the mower should be able

to mow a 1500 sq. ft. lawn on a single battery charge. The

optimum speed for mowing a lawn is 2.5 to 3.5 miles per

hour. [3] As such we have targeted a mowing speed of 3.5

mph. In order to mow the lawn with a hypothetical 12-

inch blade we have determined that we need to be able to

resolve the relative position of the mower with an

accuracy of 5cm or better. In order to simplify the initial

design, we are assuming a rectangular, level, obstacle free

lawn with a known starting position.

Requirement Specification

Lawn Area 1500 sq. ft.

Mowing Speed 3.5 +/- 1.0 mph

Battery Life 1 charge = 1500 sq. ft.

Position Accuracy Better than 5cm

Table 1: List of System Requirements and Specifications.

II. Design

A. System Overview

Our initial approach to system design was to

focus on our positioning system as we believed that it

would be the most challenging aspect of the project. As

mentioned we need a high level of both accuracy and

precision in our positioning system. However, because of

the locality of a lawn it is not necessary to know this

position relative to global coordinate systems. Instead it

may suffice to know the precise position of the rover

within the locality of the lawn. Given this it is still

necessary to have a reference position from which the

rovers position will be known. In our system that

reference point is a stationary base station.

Figure 1: RoMo Block Diagram

The system used to measure the relative position

of the rover relative to the base station is an advanced

form of GPS known as Real Time Kinematic (RTK) GPS.

This form of GPS uses measurements of the phase of the

GPS carrier signal at multiple receivers to determine the

relative position of the receivers. [4,5] In our system the

base station generates measurements with are forwarded

to the rover where they are used to calculate the

displacement between the base station and the rover.

The GPS system also has limitations. Firstly, it

only updates position once per second. [4,5] Given the

prescribed mowing speed the rover would travel 1.5

meters between updates. This may be acceptable for long

ROMO – Robotic Autonomous Lawn Mower

strait paths however it is not acceptable when making

turns. Furthermore, a connection between the base station

and rover must be maintained continuously for the GPS

system to function correctly. [4,5] If the connection was

interrupted the rover would have no way to correct its

position.

Given the above limitations of the GPS system it

is necessary to augment its output between updates. This

is accomplished using a dead reckoning system. The dead

reckoning system uses measurements from a gyroscope as

well as measurements of wheel speed. The gyroscope

generates a measurement of yaw in degrees per second. [6]

Integrating this measurement allows for the determination

of the current heading. The wheel speed measurement

determines the linear speed. Together this allows us to

integrate the velocity vector to a displacement between

GPS fixes. The advantage of this system is that the update

rate of the wheel speed and yaw rate measurements are

much higher allowing for the position to be determined

between GPS updates.

As mentioned there is a need for a connection

between the base station and the rover for the GPS system

to function properly. This connection must be maintained

continuously and must simulate a serial port operating at

57,600 baud. [4,5] Given these requirements it was

proposed to used Wi-Fi to complete this connection. It

was believed that Wi-Fi___33 would offer a stable proven

connection between the base station and rover.

In order to traverse the lawn there must be some

physical rover capable of locomotion within a 2-

dimensional plane. In order to accomplish this a wood

platform with three wheels was chosen. At the rear of the

platform two drive motors were mounted which have built

in encoders to determine wheel speed. At the front of the

platform a steering wheel was mounted. This wheel can

be rotated as it is mounted on an axle connected to a

traditional RC servo motor. The drive motors are driven

with Pulse Width Modulation (PWM) at 12V. The RC

servo is supplied 9V and a control signal at 5V.

The above systems are useless without a

computing system to run them. In order to simplify the

software aspect of the project a two-component solution

was chosen. A Pine A64 acts as the primary computer. It

has a quad core processor and runs Linux. [7] A PSOC 5LP

microcontroller is used as a real time processor to decode

input signals and generate control signals. This setup

allows the use of the best of what both technologies offer.

The combined environment has the real time hardware

capabilities associated with microcontrollers; along with

the processing power and multithreaded capability of full

size computers.

In order to power all of these systems a

somewhat complex power distribution system is

necessary. The rovers power system consists of two

batteries and a buck converter. Additionally, there is

another buck converter on the Pine A64. Overall there are

4 different supplies accessible on the rover. The base

station has one battery and one linear voltage regulator.

B. RTK GPS System

Our requirement for the GPS system is to be able

to determine the mowers differential position from the

base station within 5 cm. Traditional GPS receivers are

simply not accurate enough for this purpose. The

extension of traditional GPS positioning that enables this

level of position is known as real time kinematic GPS

(RTK). Traditional GPS receivers calculate their position

using the code information transmitted by multiple GPS

satellites. [8] RTK GPS differs in that it uses the

measurement of carrier phase. [8] This measurement leaves

several unknown variables. These are the receiver clock

offset, the satellite clock offset, the hardware biases, and

the number of wavelengths between the satellite and the

receiver.[7] If the carrier phase measurement is taken in

two locations the first two unknown variables cancel

leaving only the number of wavelengths between the

satellite and receiver unknown.[8] By fixing these at an

integer number it then becomes possible to calculate the

differential position between the two receivers[8] If one of

these receivers is in a fixed location the position of a

mower in reference to this location becomes known.

The implementation of RTK GPS we are using

consists of two SkyTraq S2525F8-GL-RTK RTK capable

GPS receivers connected via a wireless link. The base

station has a GPS module with outputs connection data

via a serial port running at 57,600 baud. [4,5] This data is

transmitted via a wireless link to the mower where it is

input to the mower’s GPS receiver. The GPS receiver on

the mower uses its own measurements as well as those

from the base station to calculate its position relative to

the base station. [4,5] The RTK receivers we are using are

rated for “1cm+1ppm” accuracy. [13] This equates to

accuracy relative to the base station of better than 2cm

when within 10km of the base station. The mowers GPS

module outputs the differential position over another

serial port running at 115,200 baud to the Pine A64 up to

once per second. [4,5] Results from a static test can be seen

in figure 2. This shows the drift over 300 samples or 5

minutes is less than 2cm.

Figure 2: GPS Position over 5 Minutes

On board the Pine A64 incoming data is fed into

a circular buffer. Then the ends of the messages are

determined, and they are parsed into usable data. This

parsed data is then timestamped and stored in a common

data storage area to be used by other software

components, namely the dead reckoning system.

C. Wireless Link

The wireless link was implemented on two

NodeMCU 1.0 devkits, each containing an ESP8266

wireless module.[9,10] Websockets were chosen as the

method of data transfer due to the high latency

provided.[11,12] Websockets allow real-time transfer of data

through TCP connections that are kept open, eliminating

the overhead of establishing a connection every time data

is to be transferred.[11,12] The NodeMCU attached to the

mower is configured as a WebSocket server, and the

NodeMCU comprising the base station along with the

other GPS antenna is configured as a WebSocket client.

The server establishes a wireless access point upon

application of power and waits for a connection request

from the client. The client when powered, continuously

pings for the server’s access point, and initiates a

connection upon receiving a response.

Once the connection is established, any UART

data that arrives to the serial port of the client NodeMCU

is converted to binary data and sent over the wireless

access point to the server NodeMCU, which reformats the

binary data to UART and outputs it from the serial port on

the server to the GPS module on the mower via cable.

While we were successfully able to implement this

system, it was not able to provide the latency or reliability

required to function correctly. This was determined to be

due to the strength of the wireless provided by the

ESP8266 when operated without an intermediate router.

Further, we determined that using an external router

would not solve to issue. The reason for working with a

self-contained system was so that the user would not be

required to move their wireless router outside each time

they wished to mow their lawn. Overall, the ESP8266 was

found to be more suitable for applications not requiring

100% successful, real time packet transfer, such as

temperature and humidity monitoring. When attempting

high speed repeated transfers, the system drops packets.

Further, the SDK only provides closed source binary

libraries so using the modem without the Wi-Fi protocol

is impossible. [12]

D. Gyroscope Control System

The gyroscope control system consists of both

hardware and software components. The hardware aspect

of the system is a Bosch BNO055 IMU which is

connected to the Pine A64 computer via UART at

115,200 baud. [6] The software control runs on its own

thread and retrieves the yaw measurement from the

gyroscope in a signed integer format up to 100 times per

second. [6] This information is then converted into a

floating-point value in degrees per second. This value is

then continuously integrated to give a relative heading

since system start. (Equation 1) This value is then

timestamped and exported to a common storage area for

use by other parts of the system, namely the dead

reckoning system.

𝜃𝑡 = 𝜃𝑡−1 + Δ𝜃𝑡 ∗ Δ𝑡 (1)

E. Wheel Speed Sensing

 In order to determine the speed of the wheels of

the mower we selected motors which have built in

encoders. Each encoder generates 64 pulses per

revolution. [13] Given the operating speed this means that

there will be a maximum of 11,733 pulses per second.

Such high speed makes in impractical to decode the

signals using interrupts and software. This led to the use

of the microcontroller with a hardware quadrature

decoder, the PSOC. The PSOC is interfaced with the Pine

A64 computer via UART at 115,200 baud. The software

running on the Pine A64 requests the current decoder

value over UART and the 32-bit value of each of the

hardware decoder registers is returned. [14] The difference

in position over time is then taken. This measurement of

counts per second is then converted into a floating-point

value of revolutions per minute. (Equations 2-3) The

RPM value measured from each wheel is then

timestamped and exported to a shared area for use by

other parts of the system, namely the dead reckoning

system. This is repeated at 30Hz.

𝐶𝑃𝑆 =
𝜅𝑡 − 𝜅𝑡−1

Δt
(2)

𝑅𝑃𝑀 =
𝐶𝑃𝑆

32
(3)

F. Dead Reckoning System

The GPS system alone is not capable of

providing the positioning information necessary to follow

a path through the lawn. In order to augment this a dead

reckoning system was constructed. It takes information

from the GPS system, the gyroscope, and wheel speed

sensors to allow for positioning updates at a much greater

rate, up to 30Hz. Additionally, under certain conditions

the GPS information may be inaccurate. An example of

this is that GPS heading is calculated as the direction from

the previous point to the current point. In a turn this may

not be equal to the true direction of travel. In order to

prevent this the dead reckoning system uses the last three

GPS positions and only considers the GPS position valid

when the second derivate of position is close to zero. That

is the north and east velocity vectors are constant. This

allows the dead reckoning system to reject inaccurate

GPS heading information when negotiating turns.

In order to update position between accurate

GPS fixes the gyroscope and wheel speed data are

utilized. The wheel speed allows for the determination of

linear speed given the known wheel diameter of 100mm.

[15] When an accurate GPS heading is received the current

heading from the gyroscope is saved. Every time there are

updated values from both the gyroscope control system

and the wheel speed sensing system the dead reckoning

system determines the new heading and speed and

integrates this velocity vector to determine the new

position. (Equations 4-9)

𝜃𝐺𝑌𝑅(0) = 𝐺𝑦𝑟𝑜𝑠𝑐𝑜𝑝𝑒 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑎𝑡 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑖𝑑 𝐺𝑃𝑆 𝑢𝑝𝑑𝑎𝑡𝑒

𝜃𝐺𝑃𝑆(0) = 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑖𝑑 𝐺𝑃𝑆 ℎ𝑒𝑎𝑑𝑖𝑛𝑔

𝑃𝑁𝑜𝑟𝑡ℎ(0) = 𝑁𝑜𝑟𝑡ℎ 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑖𝑑 𝐺𝑃𝑆 𝑓𝑖𝑥

𝑃𝐸𝑎𝑠𝑡(0) = 𝐸𝑎𝑠𝑡 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑖𝑑 𝐺𝑃𝑆 𝑓𝑖𝑥

𝑅𝑃𝑀𝑎𝑣𝑔 = 𝑤ℎ𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑤ℎ𝑒𝑒𝑙𝑠

𝑉𝑤ℎ𝑒𝑒𝑙 =
𝑅𝑃𝑀𝑎𝑣𝑔 ∗ 0.1 ∗ 𝜋

60
 (

𝑚

𝑠
) (4)

𝜃(𝑡) = 𝜃𝐺𝑃𝑆(0) + (𝜃𝐺𝑌𝑅(𝑡) − 𝜃𝐺𝑌𝑅(0)) (5)

𝑉𝑁𝑂𝑅𝑇𝐻(𝑡) = 𝑉𝑙𝑖𝑛 ∗ 𝐶𝑜𝑠(𝜃(𝑡)) (6)

𝑉𝐸𝐴𝑆𝑇(𝑡) = 𝑉𝑙𝑖𝑛 ∗ 𝑆𝑖𝑛(𝜃(𝑡)) (7)

𝑃𝑁𝑜𝑟𝑡ℎ(𝑡) = 𝑃𝑁𝑜𝑟𝑡ℎ(𝑡 − 1) + 𝑉𝑁𝑜𝑟𝑡ℎ(𝑡) ∗ Δ𝑡 (8)

𝑃𝐸𝑎𝑠𝑡(𝑡) = 𝑃𝐸𝑎𝑠𝑡(𝑡 − 1) + 𝑉𝐸𝑎𝑠𝑡(𝑡) ∗ Δ𝑡 (9)

G. Motor Control

The two motors at the back of the vehicle as well

as the steering servo are driven by the motor control

system. This system takes the outputs of the path

following system and generates PWM signals. The

commanded motors values are first retrieved from a

common shared data area. Then they are converted into

units for the PSOC microcontroller. The commands are

then sent to the PSOC over a 115,200 baud UART link.

The PSOC generates two PWM signals which drive low

side switches (Figure 3) for each of the rear motors. The

modulation range is from 0 to 100%. It also generates a

PWM signal to the front steering servo. The angle of the

steering servo is determined by the length which the pulse

is high. The range is 1ms to 2ms high time. Lengths less

than 1.5 ms turn to the left where widths greater than

1.5ms turn to the right. [16]

Figure 3: Low Side Schematic

H. Path Following

The function of the path following system is to adjust

the steering angle in order to follow a predetermined path.

In order to do this, it first imports the current position

output of the dead reckoning system. It then determines

the heading and range to the next position along the path.

(Equations 10-13)

𝑃𝑅𝑁 = 𝑁𝑜𝑟𝑡ℎ 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑅𝑜𝑣𝑒𝑟

𝑃𝑅𝐸 = 𝐸𝑎𝑠𝑡 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑅𝑜𝑣𝑒𝑟

𝑃𝑇𝑁 = 𝑁𝑜𝑟𝑡ℎ 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑃𝑇𝐸 = 𝐸𝑎𝑠𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝜃𝐶𝑢𝑟 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝑟𝑜𝑣𝑒𝑟

𝑅𝑅𝑇 = √(𝑃𝑅𝑁 − 𝑃𝑇𝑁)2 + (𝑃𝑅𝐸 − 𝑃𝑇𝐸)2 (10)

𝜃𝑅𝑇 = atan (
𝑃𝑅𝐸 − 𝑃𝑇𝐸

𝑃𝑅𝑁 − 𝑃𝑇𝑁

) (11)

 −180° < 𝜃𝑅𝑇 < 180° (12)

𝜃𝑆𝑡𝑒𝑒𝑟 = 𝐶 ∗ (𝜃𝑅𝑇 − 𝜃𝐶𝑢𝑟), 𝐶 > 1 (13)

The steering angle is determined from the heading error

(𝜃RT−𝜃Cur) multiplied by a gain constant. Additionally,

if the range to the point RRT is less than a constant this

point is considered to have been passed through. If this is

the case the next iteration of path following will use the

next point along the path. This continues until the end of

the path is reached at which point the rover will stop.

Figure 4: Rover following a generated path

The above figure (Figure 4) shows the function

of the path following system as measured with the GPS

system disabled. The orange dots are the path points

starting at (0,0) which the rover is to follow. Looking at

the diagram we can see some drift between (0,0) and (3,0)

this is the result of backlash in the steering system. The

backlash means that commanding a small steering angle

may not affect the direction of travel of the rover. The

overshoot seen around point (3,2) is cause by the limited

turning radius of this prototype.

I. User Interface and Control

Users must be able to interact with the rover to

make it function. This function is accomplished via Wi-

Fi. The rover runs a TCP command and control server on

port 5555. The available commands are listed in table 2.

Additionally, a basic client application was created for

testing purposes which allowed easy execution of these

commands via a graphical user interface. (Figure 5)

Table 2: List of User Commands and Corresponding Functions

Figure 5: Rover Graphical User Interface

III. Project Management

Table 3: A list of FPR Deliverables and progress

We managed to at least partially achieve all the

goals we set for ourselves for FPR (Table 3), however

there is still much work to be done to deliver a

consistently functioning prototype. The development of

RoMo was a bit of a rocky road. We managed to produce

a prototype that was not tested to its full capabilities and

embodies a tenuous definition of the word ‘functional’.

This result was achieved largely due to conflicting

schedules and lack of communication between members

of our team. While we met with our advisor once a week,

we did not meet nearly as often as a team although the

frequency of our physical meetings increased as the

project neared completion. There was friction between

team members that resulted in the project not being fully

tested and led to constant delays. We needed an external

force to help hold team members accountable and aid in

division of work. A team with varying skill levels and

areas of talent, but little to no management or

accountability via clear division of work wastes much

effort in getting everyone on the same page or even

Command Function

Start, Begin following path from first

point

Stop, Disable path following, halt all

motion

Add_Point,

displacement_north,

displacement_east,

Append point to end of stored

path

Clear, Clear stored path points

Enable_Path, Enable the use of the stored path

FPR Deliverable Progress

Travel 40 ft in straight line Partial

Travel 40 ft in 25 seconds or less Completed

Perform a 90-degree turn Completed

Return to starting position Partial

getting team members to communicate or contribute to

the project that could be spent advancing the project’s

state.

We also should have taken better advantage of

external resources, such as technical experts to help us in

challenging areas. We were unable to resolve the latency

issues with our wireless link, not considering that there

was a resident ESP8266 expert in M5. Aaron Stam was

our team lead, lead programmer and tester, documentation

and presentations second, and majority contributor. Kevin

Moriarty was our programming and testing second, as

well as being the lead for documentation, presentations,

team communications, and the team website. Collin

Timmerman constructed the RoMo chassis and mounted

equipment, and Leonard Luchetti designed and ordered

the H-Bridge PCBs which were modified for use in the

demo day design.

Figure 6: Gantt Chart Demonstrating Original Project Timeline

IV. Conclusion

In the time since MDR, almost all of the actual

development of our project occurred. The mower chassis

was constructed, parts were mounted, the microcontroller

and CPU were successfully programmed and then tested

after several changes in hardware and software. The

microcontroller is successfully able to read input signals

from the motor encoders as well as the gyroscope output

from IMU unit, allowing for limited path following, with

only this functionality the mower is unable to perform

course corrections, it can only navigate a set of

coordinates under the assumption of limited error, this is

of course impractical for real world use in an autonomous

rover. The installed GPS system is meant to provide the

inputs for course corrections, and the functionality is

coded into the final prototype, however testing was never

performed extensively with the system functioning and

we have no tangible results to verify the mower’s ability

to perform course corrections as of FPR. This lack of

testing can be attributed to the lack of a working wireless

link. The use of a wired connection between the base

station and rover was attempted, however insufficient

wire length lead to the rover dragging the base station

behind it, eliminating any usefulness it may have added.

 Future work would involve further testing and

optimization as well as a redesign of the physical

prototype to optimize weight distribution and install

wheels better suited to grass, dirt, or similar surfaces. The

problem of building a properly functioning wireless link

for GPS correction data still remains. Appropriate

hardware certainly exists that will resolve the latency and

packet loss issues. Further exploration of the wireless link

design could involve the use of a full-size computer

hardware rather than low power IOT focused devices such

as the original ESP8266.

 VI. Appendix

A. Cost Analysis

 VI. References

[1] C. Ingraham, "Lawns are a soul-crushing timesuck

and most of us would be better off without them," in

Chicago Tribute, chicagotribune.com, 2015. [Online].

Available:

http://www.chicagotribune.com/news/opinion/commentar

y/ct-stop-mowing-your-lawn-20150805-story.html.

[Accessed: Dec. 21, 2017]

[2] WORX WG794 Landroid Pre-Programmed Robotic

Lawn Mower with Rain Sensor and Safety Shut-off :

Garden & Outdoor

Part Quantity Unit

Price

Per 1000

Pine64 PC 1 $46.00 $38.40

GPS RTK

Receiver

2 $80.00 $44.00

DC

Motor/Encoder

2 $35.87 $35.87

12V DC Battery 1 $25.99 $18.99

IMU Chip 1 $27.88 $5.93

Back Wheels 2 $18.20 $7.88

Front Wheel 1 $5.99 $5.99

Vex Servo 1 $19.99 $19.99

PSOC 1 $10.00 $10.00

Buck Converter 1 $6.99 $3.50

H-Bridge 2 $6.83 $0.22

Total $424.64 $278.74

http://www.chicagotribune.com/news/opinion/commentary/ct-stop-mowing-your-lawn-20150805-story.html
http://www.chicagotribune.com/news/opinion/commentary/ct-stop-mowing-your-lawn-20150805-story.html

https://www.amazon.com/dp/B00SJEUFF4/. [Accessed:

21-Dec-2017]

[3] E. Perratore, “Cutting the grass in slow mow produces

better results,” Consumer Reports, 10-Jun-2013. [Online].

Available:

https://www.consumerreports.org/cro/news/2013/06/cutti

ng-the-grass-in-slow-mow-produces-better-

results/index.htm. [Accessed: 21-Dec-2017].

[4] “NS-HP-GL : GPS/GLONASS RTK Receiver,”

NavSpark. [Online]. Available:

https://navspark.mybigcommerce.com/ns-hp-gl-gps-

glonass-rtk-receiver/. [Accessed: 05-Feb-2018].

[5] “S2525F8-GL-RTK : GPS/GLONASS RTK Reciever

Module,” NavSpark. [Online]. Available:

https://navspark.mybigcommerce.com/s2525f8-gl-rtk-

gps-glonass-rtk-receiver-module/. [Accessed: 05-Feb-

2018].

[6] “BNO055,” Bosch Sensortec. [Online]. Available:

https://www.bosch-

sensortec.com/bst/products/all_products/bno055.

[Accessed: 05-Feb-2018].

[7] Pine A64 Single Board Computer Datasheet

http://wiki.pine64.org/index.php/Main_Page#Datasheet.

[Accessed: 18-Feb-2018]

[8] GMK, “RTK Fundamentals,” Sept 18, 2014. [Online].

Available:

http://www.navipedia.net/index.php/RTK_Fundamentals.

[Accessed Nov. 14, 2007].

[9] “NodeMCU Documentation.” [Online]. Available:

https://nodemcu.readthedocs.io/en/master/en/. [Accessed:

05-Feb-2018].

[10] “ESP8266 Datasheet,” Espressif Systems. [Online].

Available:

https://www.espressif.com/sites/default/files/documentati

on/0a-esp8266ex_datasheet_en.pdf. [Accessed: 05-Feb-

2018].

[11] Links2004, “Links2004/arduinoWebSockets,”

GitHub, 16-Oct-2017. [Online]. Available:

https://github.com/Links2004/arduinoWebSockets.

[Accessed: 05-Feb-2018].

[12] Espressif, “espressif/ESP8266_NONOS_SDK,”

GitHub. [Online]. Available:

https://github.com/espressif/ESP8266_NONOS_SDK/rele

ases/tag/v2.1.0. [Accessed: 05-Feb-2018].

[13] CQRobot, “12V DC Geared Motor w/Encoder-

366RPM+12kg.cm, Gear Ratio is 30:1,”

AngelANQIOOO1GB datasheet.

[14]“PSoC® 5LP: CY8C58LP Family Datasheet.”

Cypress Semiconductor, Cypress Semiconductor, 6 Mar.

2018, www.cypress.com/documentation/datasheets/psoc-

5lp-cy8c58lp-family-datasheet-programmable-system-

chip-psoc?source=search&cat=technical_documents.

[15] Devantech 100mm wheels w/ 5mm hub

https://www.robotshop.com/en/100mm-diameter-wheel-

5mm-hub.html. [Accessed: 27-Nov-2017]

[16] Vex EDR 3 Wire Servo Motor

https://www.vexrobotics.com/motors.html. [Accessed:

25-Mar-2018]

https://www.amazon.com/dp/B00SJEUFF4/
https://www.consumerreports.org/cro/news/2013/06/cutting-the-grass-in-slow-mow-produces-better-results/index.htm
https://www.consumerreports.org/cro/news/2013/06/cutting-the-grass-in-slow-mow-produces-better-results/index.htm
https://www.consumerreports.org/cro/news/2013/06/cutting-the-grass-in-slow-mow-produces-better-results/index.htm
https://navspark.mybigcommerce.com/ns-hp-gl-gps-glonass-rtk-receiver/
https://navspark.mybigcommerce.com/ns-hp-gl-gps-glonass-rtk-receiver/
https://navspark.mybigcommerce.com/s2525f8-gl-rtk-gps-glonass-rtk-receiver-module/
https://navspark.mybigcommerce.com/s2525f8-gl-rtk-gps-glonass-rtk-receiver-module/
https://www.bosch-sensortec.com/bst/products/all_products/bno055
https://www.bosch-sensortec.com/bst/products/all_products/bno055
http://wiki.pine64.org/index.php/Main_Page#Datasheet
http://www.navipedia.net/index.php/RTK_Fundamentals
https://nodemcu.readthedocs.io/en/master/en/
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://github.com/Links2004/arduinoWebSockets
https://github.com/espressif/ESP8266_NONOS_SDK/releases/tag/v2.1.0
https://github.com/espressif/ESP8266_NONOS_SDK/releases/tag/v2.1.0
https://www.robotshop.com/en/100mm-diameter-wheel-5mm-hub.html
https://www.robotshop.com/en/100mm-diameter-wheel-5mm-hub.html
https://www.vexrobotics.com/motors.html

