Final Project Review

RoMo

Robotic Autonomous Lawn Mower

April 20th, 2018

Department of Electrical and Computer Engineering

Team Romo

Kevin Moriarty CSE '18 Collin Timmerman EE '18

Aaron Stam EE '18

Leonardo Luchetti EE '18

Introduction

- Mowing the lawn takes up free time that you could spend doing things you enjoy or need to do
- The average american spends 70 hours a year on lawncare_[1]
- Mowing can cause physical problems including back pain_[2]
- Lawn Service can cost up to \$1000 per year_[3]

[1] https://www.bls.gov/news.release/pdf/atus.pdf
[2] http://homeguides.sfgate.com/pushing-lawn-mower-cause-back-pain-84971.html
[3] https://www.angieslist.com/articles/how-much-does-lawn-mowing-cost.htm

Department of Electrical and Computer Engineering

Romo: The Autonomous Lawnmower

User will be able to mow their lawn with the placement of the mower and the push of a button

Market Competition:

- Husqvarna Automower \$1500
- Honda Miimo \$2800
- Robomow RS630 -\$2500
- Worx Landroid \$910

Overview - Requirements/Specifications

Requirement	Specification
Lawn Area	1500 sq. ft.
Mowing Speed	3.5 +/- 1.0 mph
Battery Life	1 charge = 1500 sq. ft.
Position Accuracy	Better than 5 cm

CDR Deliverables

- Rover Built and Functioning
- Kinematic GPS Position Functioning
- Have Motor Control and Positioning system
 Integrated
- Power Components wired, power requirement met

Proposed FPR Deliverables

- Rover is able to travel at least 40 feet in a relatively straight line. Relatively straight is defined here as within a deviation of four inches on either side of a perfectly straight line
- Rover is able to travel the distance specified in the first deliverable in 25 seconds or less.
- Rover is able to perform a 90 degree turn in one direction.
- Rover is able to return to its starting position through a combination of application of the first and third deliverables.

Proposed FPR Deliverables

- Rover is able to travel at least 40 feet in a relatively straight line. Relatively straight is defined here as within a deviation of four inches on either side of a perfectly straight line
- Rover is able to travel the distance specified in the first deliverable in 25 seconds or less.
- Rover is able to perform a 90 degree turn in one direction.
- Rover is able to return to its starting position through a combination of application of the first and third deliverables.

System Block Diagram

Department of Electrical and Computer Engineering

System Block Diagram

Department of Electrical and Computer Engineering

Base Station System Block Diagram

- GPS Receiver gets position data and transmits to NodeMCU via UART
- NodeMCU uses Wifi functionality provided by the ESP8266 chip to transmit the GPS data to the Mower
- Data is transferred using a WebSocket Client and generated Wifi signal to a Websocket server on the Mower

Base Station System Block Diagram

Department of Electrical and Computer Engineering

Updated System Block Diagram

Department of Electrical and Computer Engineering

Cost of Materials

Item	Quantity	Cost (per piece)	Cost (per 1000)	
GPS RTK Reciever	2	\$80.00	\$44.00	 * Vendor did not respond to inquir Total Savings Per Uni \$145.90
Pine64 PC	1	\$46.00	\$38.40	
DC Motor/Encoder	2	\$35.87	\$35.87 *	
12V Battery	1	\$25.99	\$18.99	
IMU Chip	1	\$27.88	\$5.93	
Back Wheels	2	\$18.20	\$7.88	
Front Wheels	1	\$5.99	\$5.99	
Vex Servo	1	\$19.99	\$19.99	
PSoC	1	\$10.00	\$10.00	
Buck Converter	1	\$6.99	\$3.50	
H-Bridge	2	\$6.83	\$0.22	
Total		\$424.64	\$278.74	

Department of Electrical and Computer Engineering

Outline of Demonstration

Initial Conditions: Mower Stopped

Demonstration Area: Parking Lot

Total Duration: 50 seconds

Mower travels straight and turns

Video followed by live demo

- Standard parking space is 9 ft wide, mower traverses this in 5 seconds = 1.23 MPH
- => 40 ft in 22.17 seconds, Does meet deliverable.
- Mower travels in a straight line for ~35 seconds at 1.23 MPH
 ~63 feet. Does meet deliverable

Outline of Demonstration

Initial Conditions: Mower Stopped

Demonstration Area: Parking Lot

Total Duration: 50 seconds

Mower travels straight and turns

Video followed by live demo

- Standard parking space is 9 ft wide, mower traverses this in 5 seconds = 1.23 MPH
- => 40 ft in 22.17 seconds, Does not meet deliverable.
- Mower travels in a straight line for ~35 seconds at 1.23 MPH
 ~63 feet. Does meet deliverable

Video Demonstration

Department of Electrical and Computer Engineering

Video Demonstration

Department of Electrical and Computer Engineering

Mower Demonstration and Q&A

Questions?

Department of Electrical and Computer Engineering