Cumulative Design Review

Team RoMo March 8th, 2018

Department of Electrical and Computer Engineering

Team Romo

Kevin Moriarty CSE '18 Hampden, MA

Collin Timmerman EE '18 Westwood, MA

Aaron Stam EE '18 Holden, MA

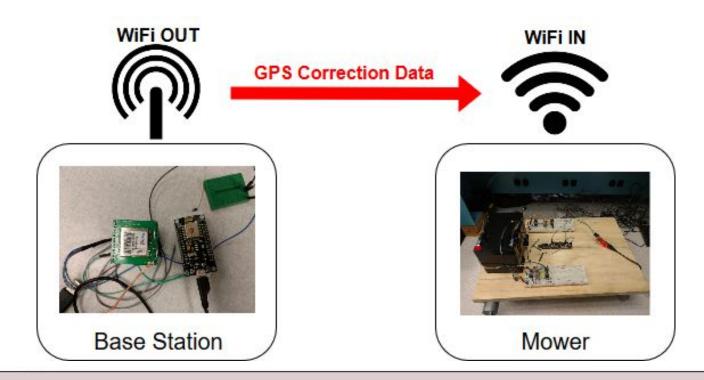
Leonardo Luchetti EE '18 East Bridgewater, MA

Project Overview

Romo -

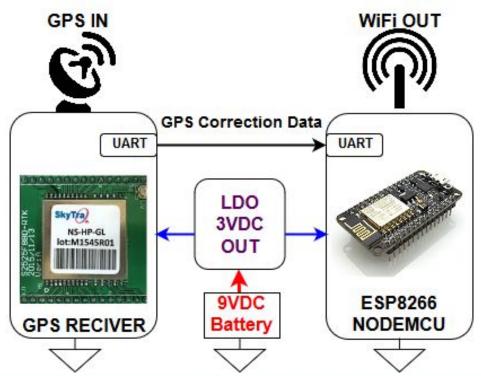
RObotic Autonomous Lawn MOwer

Romo offers the user free time and financial savings. It is cheaper than a hired worker, and easier than mowing by hand.

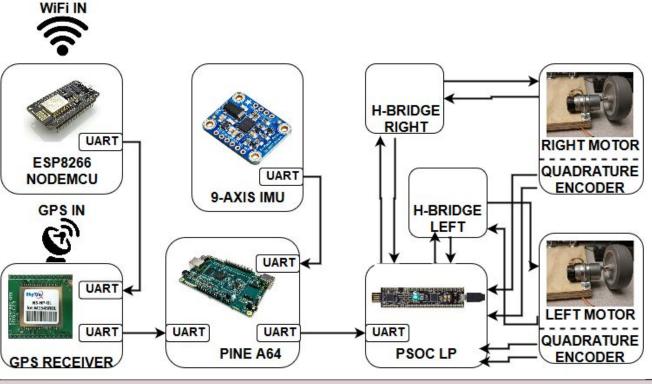

Overview - Requirements/Specifications

Requirement	Specification
Lawn Area	1500 sq. ft.
Mowing Speed	3.5 +/- 1.0 mph
Battery Life	1 charge = 1500 sq. ft.
Position Accuracy	Better than 5 cm

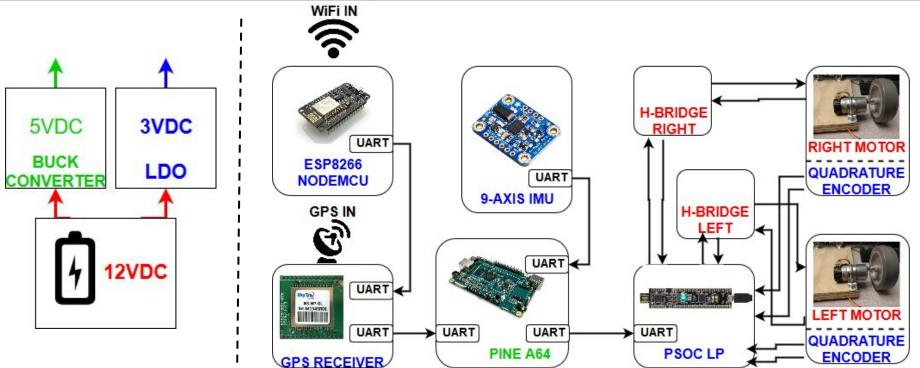
Department of Electrical and Computer Engineering


System Block Diagram

Department of Electrical and Computer Engineering


Updated Base Station System Block Diagram

- GPS Receiver gets position data and transmits to NodeMCU via UART
- NodeMCU uses Wifi functionality provided by the ESP8266 chip to transmit the GPS data to the Mower
- Data is transferred using a WebSocket Client and generated Wifi signal to a Websocket server on the Mower


Rover System Block Diagram

- GPS Correction Data inputs to GPS Receiver
- GPS Receiver outputs corrected GPS data
- Pine A64 computes current and desired position, outputs to PSOC
- PSOC outputs control signals to H-bridges and receives feedback from encoders

Department of Electrical and Computer Engineering

Rover System Block Diagram

Department of Electrical and Computer Engineering

Proposed CDR Deliverables

- Rover Built and Functioning
- Kinematic GPS Position Functioning
 - If not, some other positioning system set-up
- Have Motor Control and Positioning system Integrated
- Power Components all wired, power requirement met

Proposed CDR Deliverables

Rover Built and Functioning

- Kinematic GPS Position Functioning
 - If not, some other positioning system set-up
- Have Motor Control and Positioning system Integrated
- Power Components all wired, power requirement met

Proposed CDR Deliverables

- Rover Built and Functioning
- Kinematic CPS Position Functioning
 - If not, some other positioning system set-up
- Have Motor Control and Positioning system Integrated
- Power Components all wired, power requirement met

Proposed CDR Deliverables

- Rover Built and Functioning
- Kinematic CPS Position Functioning
 - If not, some other positioning system set-up
- Have Motor Control and Positioning system Integrated
- Power Components all wired, power requirement met

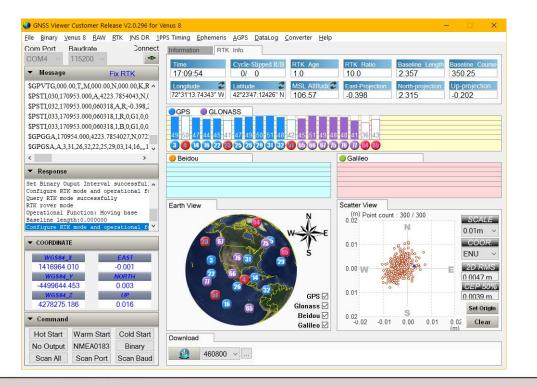
Proposed CDR Deliverables

- Rover Built and Functioning
- Kinematic CPS Position Functioning
 - If not, some other positioning system set-up
- Have Motor Control and Positioning system Integrated

Rewer Components all wired, power requirement met

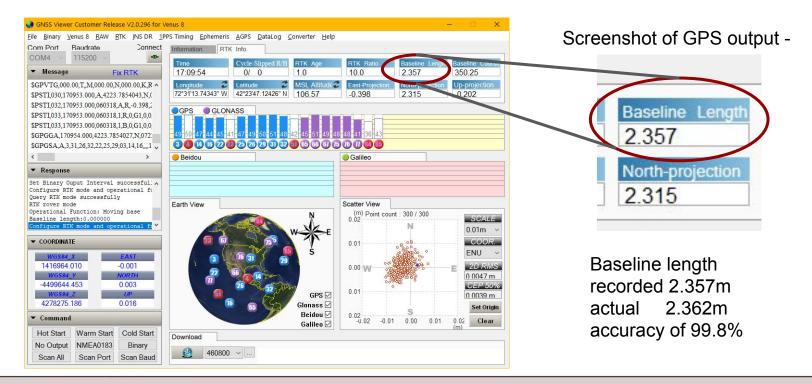
Still working on this

Outline of Demonstration

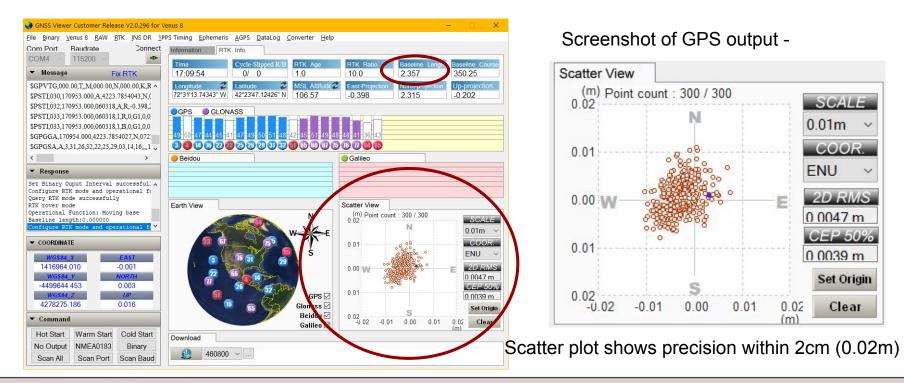


GPS Modules placed 93 inches (2.362m) apart, tested in static positions

Department of Electrical and Computer Engineering


Outline of Demonstration (cont.)

Screenshot of GPS output -


Department of Electrical and Computer Engineering

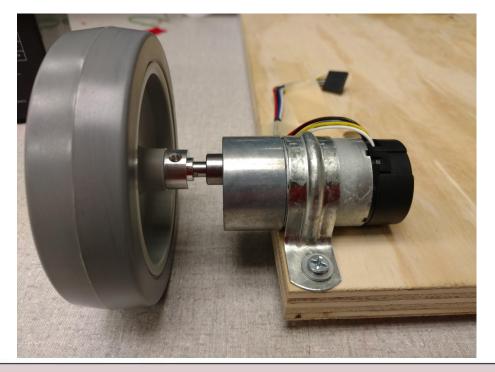
Outline of Demonstration (cont.)

Department of Electrical and Computer Engineering

Outline of Demonstration (cont.)

Department of Electrical and Computer Engineering

Power Capacity Test


Power testing performed by measuring motor stall current and extrapolating to battery capacity.

Stall current for single motor ~= 4.6A * 3 motors = 13.8A + 2A for mower electronics = 15.8A total draw

Battery capacity = 12Ah; 12Ah/15.8A = 45 minutes 30 seconds runtime

Power Capacity Test

Mower blade is 12", accounting for overlap effective width of 8".

Giving us 1500ft *12/8 = 2250 ft to mow a 1500ft² lawn.

@3.5 mph = 7minutes 18 seconds

@2.5mph = 14 minutes 36 seconds

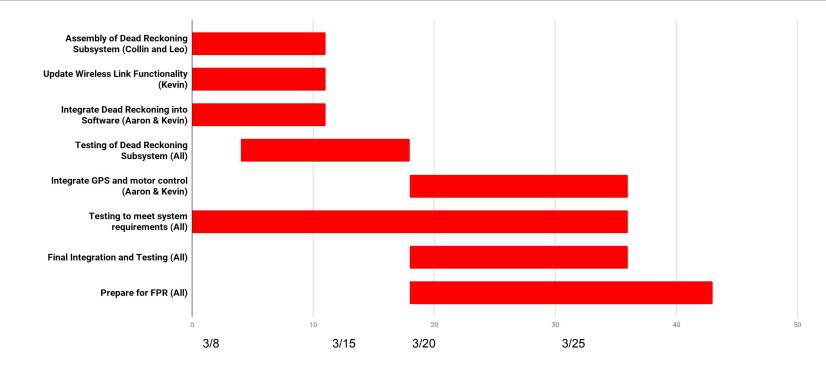
@1.0mph = 25 minutes 34 seconds

Department of Electrical and Computer Engineering

Planning Ahead: FPR Deliverables

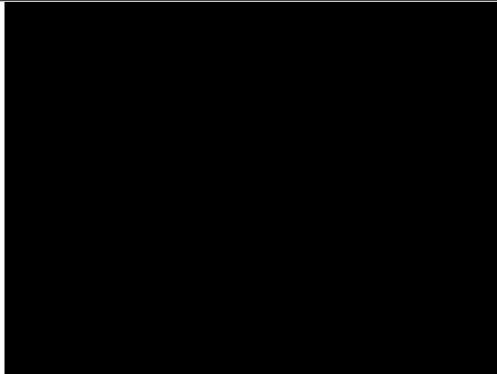
- Mower can traverse the lawn
 - Can Drive straight
 - Path following algorithm
- Improve System: wireless link performance
- Simplify set up of Mower

Planning Ahead: Path to FPR

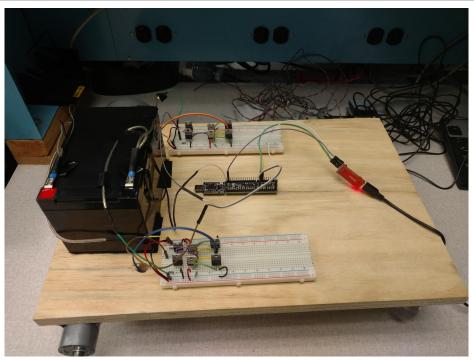

Task	Start Date	End Date	Duration
Finish testing/troubleshooting GPS (Aaron)	6-Dec-17	24-Dec-17	18
Setup and Test GPS with Two Receivers (Aaron & Kevin)	6-Dec-17	20-Dec-18	379
Port GPS Software to Raspberry Pi (Aaron & Kevin)	20-Dec-17	20-Jan-18	31
Complete chassis frame (Leo)	20-Dec-17	20-Jan-18	31
Mount Power Supply to Chassis (Collin)	28-Dec-17	2-Jan-18	5
Power Distribution (Collin)	2-Jan-18	5-Jan-18	3
Mount Motor Control Subsystem to chassis (Leo)	28-Dec-17	5-Jan-18	8
Test Motor Control and Chassis Functionality (Leo & Kevin)	5-Jan-18	12-Jan-18	7
Assembly of Dead Reckoning Subsystem (Collin and Leo)	12-Jan-18	19-Jan-18	7
Integrate Dead Reckoning into Software (Aaron & Kevin)	12-Jan-18	19-Jan-18	7
Testing of Dead Reckoning Subsystem (All)	19-Jan-18	26-Jan-18	7
Integrate GPS and motor control (Aaron & Kevin)	26-Jan-18	2-Feb-18	7
Testing to meet system requirements (All)	2-Feb-18	2-Mar-18	28
Final Integration and Testing (All)	2-Mar-18	11-April-18	40
Prepare for FPR (All)	11-Apr-18	20-April-18	9
Description of Flaghting and Comparison Fra		A 1 1	. D

Department of Electrical and Computer Engineering

Task	Start Date	End Date	Duration
- Finish testing/troubleshooting GPS (Aaron)	6-Dec-17	24-Dec-17	18 –
Setup and Test GPS with Two Receivers (Aaron & Kevin)	6-Dec-17	20-Dec-18	379
Port GPS Software to Raspberry Pi (Aaron & Kevin)	20-Dec-17	20-Jan-18	31
Complete chassis frame (Leo)	20-Dec-17	20-Jan-18	31
Mount Power Supply to Chassis (Collin)	28-Dec-17	2-Jan-18	5
Power Distribution (Collin)	2-Jan-18	5-Jan-18	3
Mount Motor Control Subsystem to chassis (Leo)	28-Dec-17	5-Jan-18	8
Test Motor Control and Chassis Functionality (Leo & Kevin)	5-Jan-18	12-Jan-18	7
Assembly of Dead Reckoning Subsystem (Collin and Leo)	12-Jan-18	19-Jan-18	7
Update Wireless Link Functionality (Kevin)	8-Mar-18	19-Mar-18	
Integrate Dead Reckoning into Software (Aaron & Kevin)	12-Jan-18	19-Jan-18	7
Testing of Dead Reckoning Subsystem (All)	19-Jan-18	26-Jan-18	7
Integrate GPS and motor control (Aaron & Kevin)	26-Jan-18	2-Feb-18	7
Testing to meet system requirements (All)	2-Feb-18	2-Mar-18	28
Final Integration and Testing (All)	2-Mar-18	11-April-18	40
Prepare for FPR (All)	11-Apr-18	20-April-18	9


Department of Electrical and Computer Engineering

Planning Ahead: Path to FPR


Department of Electrical and Computer Engineering

Power Demonstration

Department of Electrical and Computer Engineering

Mower Demonstration and Q&A

Department of Electrical and Computer Engineering

Mower Demonstration and Q&A

Questions?

Department of Electrical and Computer Engineering