Instrumented Beehive

Manali Palwankar, CSE, Max Aukshunas, CSE

Abstract—There are many things on this planet that we must take
care of, but bees are one of the most important. Bees play an
important role in the pollination of the world’s plants that us
humans consume. We have beekeepers to monitor them, but with
the astronomical amount of bees and relatively small amount
beekeepers, this proves to be a difficult task. Our system allows
beekeepers to monitor the most important conditions,
temperature and humidity, in their already existing beehives. We
have a dummy beehive frame equipped with sensors and a
microcontroller which beekeepers will insert into their existing
hives. The beekeepers will be able to analyze the conditions of
their hives using our web interface as well as receive real-time

alerts when abnormalities occur.

L INTRODUCTION

During the recent decade, bees’ population has been declining
by an alarming rate, up to 30 percent per year, with a total loss
of domesticated honey bee hives in the United States worth an
estimated $2 billion. Major causes of the decline include
insecticides, pesticides, habitat loss and general decline in
their diet. There has been a major habitat loss due to climate
change and monocultural agriculture practices. This has
greatly affected the world as bees play a major role in
pollination. It has affected farming and major food production
[1].

The EPA has been working to save honey bees and other
pollinators from pesticide exposure including major policies.
Howeyver, little has been done about the habitat loss as it
requires a lot of resources and time. Beekeeping is
commercialized on a large scale and hence Beekeepers can
provide enough habitat as they can also earn profit by farming
honey.

Our product is aimed to provide a cheap solution to
providing a safe and quality environment for bees which can
monitor their health and can also be used to provide
significant data for research on bee heath.

A major thing that sets us apart from competitors[5] is that
our system is portable. That is, it can be moved within a
beehive as well as hive to hive. Our competitors have created a

completely new hive that beekeepers must buy and replace

M. Aukshunas from Lowell, MA (e-mail: jaukshunas@umass.edu)
M. Palwankar from Mumbai, India (e-mail: mpalwankar@umass.edu)

[1] A nest within Beehive where Queen Bee lays eggs

their old hives with. That plan which involves replacing all old
hives with new hives is infeasible because there are over 80
million hives kept globally [2].

Our system will be very portable in that it can be moved
within the hive to account for the Brood[see footnote #1]. This
is the most important location in the hive to record
temperature and the location varies over time. The location
also varies from hive to hive so it’s essential that the beekeeper
can put our system where ever they see fit. As the default, our
sensors will collect readings every 15 minutes because we
don’t mind if there are temperature or humidity changes for
periods of less than 15 minutes. Bees can withstand those
short changes but those changes start to be important once
they are constant for at least 15 minutes. If the beekeeper
wishes to change that interval, they can easily do so on the
website. Each reading must have the date and time taken with
it in order for beekeepers to perform the correct analysis of
their hives. These readings are uploaded to the server every
time they are recorded. Once at the server, the beekeeper will
be able to see all the data for each of their hives. They will be
able to view graphs of how the temperature and humidity has
varied over time. Based on those graphs, the beekeeper will be
able to see if the bees are constantly living in the proper
conditions. If there are abnormalities at a certain time and
hive, the beekeeper will notice this and try to improve living
conditions at the hive. Our system uploads data to the server
as long as the hive is in WiFi range. The required power for
our system is generated at the hive via solar panels. In order to
account for lack of sun and inclement weather, we will have a
rechargeable battery that will power the system. This
rechargeable battery will be charged by the solar panels and
have enough capacity to power the system for 13 days without
being charged by the solar panels. Our system will be able to
operate in all weather conditions and will be working year
round. We have encased our system with epoxy to protect our
system from the harsh elements of winter in New England.
Table 1 shows the specifications for our system.

Table 1: Requirements and Specifications

Alerts Temperature change +/- 5 °F

Low battery

Data Collection Every 15 minutes

Data Transfer Every 15 minutes

Data Accessibility Remote
Renewable Energy Source Solar
Power Limitations 13 Days
Operability All weather conditions, all
year
Range Within 300 feet of WiFi
L. DESIGN
A Overview

This technology should
provides a simple, cost-effective way for beekeepers to
monitor their hives’ well-being. We considered making a

solve our problem because it

completely new hive with sensors built into it but this would
be very expensive for beekeepers. One of them would be
expensive, and if they wanted to replace all of their hives it
would cost a fortune. Our system costs less than competitors
($470 vs $550), but most the cost comes from the power
supply; see Appendix B. We also considered using cellular
data to account for lack of WiFi in remote locations but that
would mean working with cellular networks such as Verizon
and AT&T to get cellular data on each individual system. We
could have also used LoRa and other long range
communication methods but these would have been more
complicated and more expensive than WiFi. Figure 1 shows

our final block diagram which consists of 6 components.

Sensor Network il Supply
e — I Solar Panel I
Parameter Value pe— Charge Contole |
o ﬂ Microcontroller Rechargeable Batteryl
Sensor Accuracy +/-1°F

Arduino Uno I

WiFi Module

Web Server V ESP8266|
Database l
User Interface '

SMS Alerts

A Twilio API I
|4

Figure 1: Block Diagram

The Sensor Network will be placed on a dummy frame and
it’s what is going to take all the readings. The Microcontroller
will tell the sensors to read every 15 minutes and it will store
the readings as well as date and time stamp them. The
Microcontroller will connect to the WiFi Module which will
then upload the data to the Web Server’s database. The Power
Supply will generate power as well as provide constant power
to the microcontroller. Using Twilio’s API, we will be able to
send real-time text message alerts to beekeepers to inform
them of irregularities.

B. Sensor Network

The sensor network (Refer to figure 2) will act as the
primary resource of our data as it will read temperature and
humidity. The sensor network consists of 5 thermistors that
temperature, 1 waterproof
temperature, and a temperature and humidity sensor for the

record sensor that records
housing. In total, there are 7 sensors that record temperature
and 1 that records humidity. The original plan was to lay out 8
thermistors on the frame, but because of the limited number of
analog inputs on the Arduino, we could only use 5. Once the
recordings have been taken in from the sensors, the data is
then sent to the server via WiFi for further analysis. Data will
be read every 15 minutes or how ever long the beekeeper
chooses.

With expertise of our beekeeper sponsor and experiments
using different temperature sensors, we decided to use 8
temperature sensors on a dummy frame inside the hive (only 5
can be used). The sensor network is shown in in Figure 2.

-

o

\ N

,(7%

Figue 2: Sensor network

We performed tests on three types of sensors which
include thermistors, waterproof sensors, and the actual
temperature via a thermometer. Our goal for the experiment
was to get accurate and consistent readings. We used a digital
thermometer for reference. Few of our experimental readings
are shown below in figure 3.

Temperature vs. Time
- 0
_ !
o
S [T o~ Sy M o
S W

Tirn (5)

Figure 3: Temperature vs Time testing

C. Microcontroller

For initial testing purposes, we used Arduino Uno R3
SMD. It is driven by ATMega328 Chip which contains a KB
Data storage and 32KB flash memory[13]. Due to lack of
storage space on the chip, we are looking at options of external
storage that can store data at least worth 15 days in the case of
failure in data transfer. The lack of storage also prevented us
from adding more features into the Arduino code like being
able to change the WiFi from the website.

We planned to design a circuit layout using the ATMega
2560 chip[13] and use it to make a PCB for our final
microcontroller. Due to lack of time, we were unable to get the
PCB working properly or even get a new Arduino with more
storage space. Our microcontroller and circuitry was placed
outside the hive in the housing which is attached to the dummy
frame. The wires from the sensors run through a slot on top of
the frame that then leads to the housing. The design can be

explained in the figure 4 below.

- 4P

Figure 4: Design for Housing

D. Power Supply

The power supply is one of the major components of our
project. We are going to use solar energy to drive the whole
system. The prototype will consist of one 5S0W solar panel,
55Ah 13V rechargeable battery, a switching voltage regulator
circuit[12], and a solar charge controller[11].

We used a power supply and with 5V of power, the Arduino
drew 290 mA of current. At 5V, the total power consumption
of the system will be 1.45W considering the microcontroller
draws 290mA of current. Assuming, the system will run
constantly, it will require 452.3 WH. Because our battery is
13V, the system will need 34AH to run for 13 days. However,
battery does not discharge all the way to OV. If we assume that
the state of charge is approximately linear, and considering the
power cutoff after the battery reaches 8V, the system will use
up the battery in 13 days.

The output from the charge controller is 13V and is further
converted to 5V using a switching voltage regulator
LM2596[12]. This regulator is 80% efficient and has minimal
power loss,

The charge controller is a major component of our solar
system. It regulates the charging and power suply between the
Solar panel, microcontroller and the Rechargeable battery. The
Charge controller stops outputting power once the Battery

reaches 8V.
Table 2: Power cost analysis
Components cost($) Specifications
Solar Panel[19] 105 50W, outputs
12V-22V
Charge Controller[11] 20 20A, 12/24V
Rechargeable Battery[18] | 118 55Ah, 13V

D.1. Battery Percentage

State of charge of the battery can be determined by the
Voltage of the battery has accross its nodes. This is the easiest
way to determine the State of Charge, although it is not the
most accurate. Whether the system is under load or not affects
the voltage across the nodes but we decided to stick to the
estimated state of charge.

We read the voltage across the terminals of the battery and
convert it to a voltage reading and convert it to state of charge.

Battery Percentage

11.75

Battery Voltage(V)

o 25 50 75 100
State of charge(%)

Figure 4: Battery percentage
Because our charge controller stops outputting voltage after
the battery reaches 8V, we set our 0% as 8V. Our 25% is
9.25V. Our system sends sms alerts in case the battery goes
below 25%. Figure 4 shows approximation for our system.

E. WiFi Module

The ESP8266 WiFi Module [7] first connects to WiFi using
the given name and password. Since UMass’s school-wide
WiFi, eduroam, is a WPA2 encrypted network [14], we had to
set up a hotspot using one of our phones. The data from the
microcontroller will be sent to the WiFi module using AT
commands, then that will create a TCP connection with our
server and send HTTP commands containing the data. While
we have learned similar things in ECE 374 Computer
Networks and the Internet, most of these commands and
algorithms have been taken from the WiFi module data sheet
[3]. The WiFi
microcontroller and if we receive the right messages (normally
an “OK”), we know it’s working correctly. Every time the
Arduino loops back through the same set of code, it checks to

module sends messages back to our

make sure it is connected to the WiFi. If it wasn’t connected to
the WiFi and we had available storage space on the Arduino,
we would have stored the data until it re-connected to the
WiFi.

F. Web Server
We have rented a server from a hosting website (HostWinds

[6]) that has a MySQL [15] database to contain the all the data
that ever gets collected. With our current hosting plan, we have
unlimited database storage which provides us with the ability
to scale our product if we ever wished to. The database
contains all the readings along with the dates/times as well as
the beekeeper’s settings for the delay, phone number, and alert
thresholds. The database contains all the data which can then
be seen on the user interface of our website; see Appendix A.
All of the files for uploading/outputting data and the rest of the
functionality in the back-end were written in PHP. The user
interface was designed using HTML, CSS, and JavaScript and
has a bee theme to it (black and yellow colors). We learned
how to use JavaScript via YouTube videos and coding tutorial
websites like W3Schools [16]. To make the plots of the data,
we had to use a JQuery library called jqPlot [8]. This was also
a new technology to us so we used the same methods of
learning how to use it.

When the beekeeper first visits the website, they will
land on the home page, which has a few things.

(N
(Sensor 0 \

77.89°F
2 minutes ago /

Sensor 4 \

Sensor 1 Sensor 2 Sensor 3

78.67°F

2 minutes ago

78.34°F

2 minutes ago

94.20°F
2 minutes ago

o
4 Outside

Sensor 5 Housing Temp

81.78°F
\ 2 minutes ago /
{ Housing Hum \

23.75%

2 minutes ago 97.8%]
\ J

84.12°F

2 minutes ago

96.42°F
2 minutes ago

93.56°F
2 minutes ago

Figure 5: Current readings on home page

It has all the current readings for each sensor and how long
ago they have been updated. Each sensor should update at the
same time, so if there is a sensor with a different last updated
time, we know there is something wrong with the functionality
of that sensor. If a temperature is above 95° F, the sensor’s
background turns red to show that it’s currently hot. If a
temperature is between 93° F and 95° F, the background turns
green to show that its close to being hot. The background stays
at its default color, gray, if the temperature is below 93° F.
Also, the current battery percentage can be seen in the bottom
right corner. The battery percentage as well as the readings are
all a part of the data that gets uploaded to the server during
each loop. Below this section is the settings section, where the
beekeeper can change a few things. They can change the
phone number that they wish to get alerts sent to as well as
change the threshold for the temperature alert and battery alert.
They can also change the status of each alert, turning it on or
off. The last thing they can do in the settings section is change
the delay of the readings. The current default is every 15

minutes, but if they want to make it shorter or longer, they just
simply have to enter in an integer and click the update button.
The delay for the readings is controlled by the code on the
Arduino, so every time the readings are recorded, the WiFi
module creates a TCP connection with the website and passes
a GET command (HTTP request method) [17], to get the
current delay from the website. This is different from when the
data gets uploaded to the website, because in that case, we are
sending a POST command [17]. The final thing the beekeeper
can do on this page is if they want to see data from the past,
they can click on any of the sensors of the top of the page and
choose a time period for which they want to see data for.
Choosing these options and clicking the “Display Graph”
button will bring the beekeeper to a new page where the data
gets outputted.

There are a few things the beekeeper can do/see on
the output data page. If they wish to see all the individual data
points for the specific time period and the selected sensors, all
they have to do is click the “Toggle Data Table” button and
each data point is outputted. This is useful to the beekeeper if
they wish to see what the exact value of a sensor is at a certain
date/time. Below that, is the graph of the raw data for each
selected sensor.

Raw Data

Sensor 0

Sensor 4

Outside Waterproof

Sensor 3

Housing Temp

& e W = = = = =

Figure 6: Raw Data Graph

Each sensor on the graph is color coded so the beekeeper can
see which sensor is at what value at what time. Sometimes the
raw data can be quite choppy and hard to read. For this reason,
we created an exponentially smoothed graph that really helps
shows the trends of each sensor and is overall a lot easier to
look at.

Exponentially Smoothed Data

Figure 7: Exponentially Smoothed Graph

With these graphs, the beekeeper can easily analyze the trends
over time for each sensor. Below the exponentially smoothed
graph is the sensor metrics section. This provides useful
statistics for each sensor like the average, maximum,
minimum, average change between readings, standard
deviation as well as how many readings are multiple standard
deviations away. This provides the beekeeper with a quick and
easy way to see the most important values for the set time
period. The standard deviation part really helps show the
beekeeper how much the sensors values vary (variation is

normally a red flag).

G. SMS Alerts

We have
communications platform, Twilio [10]. We use this phone
number to send text messages to the beekeeper when certain

rented a phone number from cloud

conditions are satisfied. Each time we record data and upload
it the website, each one of those readings goes through a set of
checks. The last 8 readings for a sensor are taken from the
database and the average for those are calculated. The value
chosen by the beekeeper is then added and subtracted from
that average. If the current reading is outside that range, the
alert gets triggered and the beekeeper will get a text saying
that specific sensor is at the current value. We call this alert the
“moving average” alert.

Currentreading = x
1. GET VALUES
Average of last B readings = 70°F
Threshold chosen by beekeeper = 5°F
2 CHECK Ifx>75°F: ALERT TRIGGERED
CONDITIONS
Ifx<&5°F: ALERT TRIGGERED

Figure 8. Moving Average Alert Example

This kind of alert isn’t[EAkEi
very effective in detecting gradual
increases or decreases so we also

4
have a “trending” alert. This is éday,Ap%
calculated by checking the current
reading with the previous reading
and seeing if it is an increase or
decrease. If there is a majority (at
least 7 increases or at least 7
decreases) over the last 10
readings, we consider that a trend
and an alert will get triggered.
Also, we have an alert set up for
the battery level. It’s
default trigger value is 25% so

Press home to unlock

Figure 9: Alert Examples

if the battery level drops below that, the beekeeper will receive
a text message. All of these alerts are checked in the same
PHP file that gets used when data gets uploaded to the
website. We have used Twilio’s API to create messages and
send them using the phone number they gave us. Again, if the
beekeeper wishes to change the values on these alerts or turn
them on/off, they can.

1I. PROJECT MANAGEMENT

Table 3: Final Project deliverables

Deliverable Status
Recording temperature, Completed:
date/time stamped Recording/storing

temperature readings from 5
Sensors.

Data uploaded to server/UI Completed: Each reading
uploaded separately from

server’s database

Real-time SMS alerts Completed: Test alert able to

be sent to phone

Prototype of power supply Complete

Complete

Battery Percentage

The final prototype has 7 sensors that record temperature
and one humidity sensors which records housing humidity. We
also have a circuit which reads the voltage across our battery
which is then converted to state of charge. Because of our
input limitations, we don’t have more temperature sensors
which is what we would have liked.

Our temperature sensors are thermistors that take in a
voltage reading and deliver that reading to the analog inputs of
the Arduino. We
temperatures in Fahrenheit. The battery percentage reading is
uploaded to the server along with other sensor readings and
battery percentage. The data is time stamped and uploaded to

converted those voltage levels to

the server. These reading points are analyzed for irregularities
and sms alerts are sent if the data is above or below the
thresholds. Once the readings have been taken in, we have the
Arduino communicating with the WiFi module. The Arduino
passes commands to the WiFi module first telling it to connect
to the WiFi. Instead of using the complicated process of
connecting to UMass’s WPA2-Enterprise
network, we decided to create a hotspot via cell phone that

campus-wide,

acts like a normal router. Once connected, the WiFi module
can create a TCP connection with our website. Once that
connection has been established, we send a string containing
the HTTP command we want to use (POST [11]), the PHP
script, and the values of the data readings. If the transfer is
successful, the PHP script should have been executed and we
should be able to see the data in the backend of the server. We
have multiple tables in the database for each sensor so we can
choose which sensor we want to look at the data for. We can
then see the data in the user interface by choosing which
sensor we want to look at.

The team has overall worked well together. We met twice a
week and discussed what we’d accomplished and what our
short term as well as long term goals were. We communicated
in a group chat regarding meeting up to work on the project
for the individual parts. We were in contact with our Sponsors
Frank Linton and Brant Cheikes regarding our progress. It
helped us to stay on track. Lacking an Electrical Engineering
major definitely was a drawback as we took longer than
expected to design our PCB. However, working on an
interdepartmental project gave us interested insights on how
the different components of the project should work together.

I11. CONCLUSION

Our final prototype is a retrofit frame that can be put into
any existing beehive. The system records temperature and
humidity data and is powered by solar energy. The system is
able to withstand inclement weather conditions and can run
without sun for 13 days. We were able to test our systems on
live bees in Warm Colors Apiary[20] in South Deerfield. We
collected valuable data from our visit and helped us verify our
specifications and also realize some drawbacks of the system.

We put in hard work to design the sensor layout, Frame and
housing design and system layout with the help of Mechanical
Engineers on the team. The prototype has been verified as
convenient and user friendly by Dan Colon from Warm Colors
Apiary[20].

[A] Further development.
If we are able to further develop our system,
there is room for development in the following areas,
1. Add a camera to hive for security purposes
2. Add a weighing scale to weigh honey
3. Make the connection between our frame and power
system retractable.

V. APPENDIX

A. http://instrumentedbeehive.website/

Parts Development Production (1000)
Sensor Network $48.57 $27.17
Arduino/WiFi Module $36.90 $31.21
Solar Panel $105.00 $105.00
Battery $118.39 $89.75
Rest of Power System $109.65 $98.11
Housing $51.94 $44.23
B. Total $470.45 $395.47
V. ACKNOWLEDGMENT

Special thanks to our faculty advisor, Prof. Lixin Gao. We
would also like to recognize our evaluators, Profs. William
Leonard and Yadi Eslami for feedback that greatly improved
our system. We would like to thank Dan Conlon of Warm
Colors Apiary for feedback and live testing. We would also
like to thank our sponsors Frank Linton and Brant Cheikes.

VI REFERENCES
[1] McDonnell, Tim. “Here's Why All the Bees Are Dying.”
Mother Jones, 23 June 2017,

www.motherjones.com/environment/2015/07/climate-cha
nge-killing-bumblebees/

[2] http://www.safechemicalpolicy.org/the-number-of-honey

bee-hives-have-increased-globally/

[3] https://www.sparkfun.com/datasheets/Cellular%20Modul
es/AT Commands Reference Guide r0.pdf

[4] APSBiker. “Arduino Uno - R3 SMD.” DEV-11224 -
SparkFun Electronics,

www.sparkfun.com/products/11224.

[5] The Arnia remote hive monitoring system was developed
by beekeepers, for beekeepers, http://www.arnia.co.uk/

[6] Hostwinds, https://www.hostwinds.com/shared.php

[7]1 ESP8266 WiFi Module,
https://www.sparkfun.com/products/13678

[81 jgqPlot plotting software, http://www.jgplot.com/

[91 Solagris, https:/solargis.info/imaps/

[10] Twilio, https://www.twilio.com/

[11] All Powers Charge Controller,
http://iallpowers.com/index.php?c=product&id=371

[121LM2596 Voltage regulator
http://www.ti.com/lit/ds/symlink/lm2596.pdf

[13] ATMega
2560,https://cdn.sparkfun.com/datasheets/Components/Ge

neral%20I1C/2549S .pdf
[14] WPA2 Network
https://www.webopedia.com/TERM/W/WPA2.html
[15] MySQL database https://www.mysql.com/
[16] W3Schools https://www.w3schools.com/js/default.asp

[17] HTTP Request methods
https://www.w3schools.com/tags/ref httpmethods.asp

[18] Battery
https://www.batterysharks.com/Universal-Power-UB12550-45
825-p/UB12550_B12-55.htm?gclid=CjwKCAiAweXTBRAhA
EiwAmb3Xu6gSirzOrMgumBeSgegbyew7taOgN_O8jORII2
ONXYIEieBRDh_JMhoCXxQQAvD BwE

[19] Solar Panel
https://www.homedepot.com/p/Ramsond-50-Watt-12-Volt-Mo
nocrystalline-PV-Solar-Panel-SP-50/203423806

[20] http://www.warmcolorsapiary.com/

[21] Battery state of charge
https://www.energymatters.com.au/components/battery-voltag

e-discharge/

