Preliminary Design Review

Team RCA
October 15, 2012
RCA (Real-Time Concussion Analyzer)

Timothy Coyle
EE

Scott Rosa
CSE

Kenneth Van Tassell
EE

Justin Kober
EE

Department of Electrical and Computer Engineering
Advisor: Professor Hollot
Concussion Detection in High School Football

- Current concussion detection
 - Train coaches to recognize symptoms

- Players may hide or not experience symptoms right away
How significant is the problem?

- 1.6 – 3.8 million sports-related concussions in the United States every year
 - Have reached “epidemic level”

- Not only professionals
 - Young people ages 15 – 24 years
 - Second leading cause of TBI (Traumatic Brain Injury)
Context: Effect on Individuals

- **Post Concussion Syndrome**
 - Problems concentrating, irritability, sensitivity to light...

- **If gone undiagnosed**
 - One hit away from traumatic brain injury
 - Multiple impacts add up
Context: Effect on Groups

- Affects team sports and the way they’re played
- “Tough guy attitude”
 - Creates a culture
- Subjective decision making
Requirements Analysis: Specifications

- Real-Time continuous impact measurements
- Player specific adaptability
- Equipment weight increase less than 5%
- Effective range 150 m
- Responds in under two seconds
- Robust
 - Interference
 - Durable
Requirements Analysis: Inputs and Outputs

- **Input**
 - Impact data

- **Output**
 - Likelihood of concussion
 - Access to archived impact data
Design Alternatives

- **HITS – Head Impact Telemetry System †**
 - Six accelerometers
 - Frequency, location, and magnitude
 - Sideline response system
 - Linear acceleration

†Measuring Head Kinematics in Football: Correlation Between the Head Impact Telemetry System and Hybrid III Headform. Beckwith, Jonathan, Jeffrey Chu, and Richard Greenwald. October 13th 2011
Design Alternatives

- **ShockBox**
 - *Impakt Protective*
 - Commercial use for football/hockey
 - Secured with high adhesive bonding tape
 - Wireless transmission
 - Threshold of 50 g set by app

- **HEADS**
 - *BAE Systems*
 - Military use
 - Suspended beneath the crown of the helmet
 - Wireless/USB transmission
 - Processing done by computer at base
From Impact to Probability

- "Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion”

- Rotational acceleration is important

\[
\text{risk} = \frac{1}{1 + e^{-(c_1 + c_2)}}
\]
Risk Function

\[C_1 = -12.531 \]
\[C_2 = 0.0020 \]
Risk Function

\[
\text{risk} = \frac{1}{1 + e^{-\left(c_1 + c_2 a\right)}}
\]

where

\[
c_1 = -12.531 \quad \quad c_2 = 0.0020
\]

and

\[
I = m \sqrt{ax^2 + ay^2}
\]
Our Solution: RCA

- **Array of sensors in helmet padding**
 - Continuous measurements
 - Variable impact thresholds
 - Wireless transmit on threshold trigger

- **Base station**
 - Database: Impact data & medical history
 - Concussion algorithm
 - Wireless transmit to UI & triggered helmet

- **UI**
 - Android device
 - Easy to interpret results within two seconds of impact
Our Solution: RCA

- **Array of sensors** in helmet padding
 - Continuous measurements
 - **Variable impact thresholds**
 - Wireless transmit on threshold trigger

- **Base station**
 - **Database: Impact data & medical history**
 - Concussion algorithm
 - Wireless transmit to UI & triggered helmet

- **UI**
 - Android device
 - Easy to interpret results within two seconds of impact
Our Solution: Block Diagram

Impact Data Collection
- Power Supply
- Processing
- Sensors
- TX/RX

Data Analysis
- Data Processing
- Impact Data TX/RX
- DB
- UI TX/RX
- Power Supply

User Interface
- Settings
- TX/RX
- DB Interface
- History
- GUI
Sensor Network

Impact Data Collection
- Power Supply
- Processing
- Sensors
- TX/RX

Data Analysis
- Data Processing
- Impact Data TX/RX
- DB
- UI TX/RX
- Power Supply

User Interface
- Settings
- TX/RX
- DB Interface
- History
- GUI
Sensors

- Requirements
 - Accurate
 - Response time under 100 ms
 - Low power
 - Lightweight and secured safely
 - Players should not notice sensors

- Implementation
 - Accelerometers, Gyroscope
 - Successful Senior Design Projects
 - Motion Analyzer for Physical Therapy (2010) for Accelerometers
 - Personal Head-Up Display (2009) for Gyroscope
Power

- **Requirements**
 - 3.5 – 6 V in helmet
 - Safe, reliable and lightweight
 - Up to five hour run time

- **Experience**
 - Power supplies
 - Design experience in previous coursework
 - Theater design project
User Interface and Communication

Impact Data Collection
- Power Supply
- Processing
- Sensors
- TX/RX

Data Analysis
- Data Processing
- Impact Data
- TX/RX
- DB
- Power Supply

User Interface
- Settings
- TX/RX
- DB Interface
- History
- GUI
UI

- Requirements
 - Easy to use
 - Deliver meaningful results
 - Medical staff
 - Coaching staff

- Implementation
 - Android Development
Tx/Rx for UI

- Requirements
 - Reliable
 - Response time under 500 ms
 - Easy to implement

- Implementation
 - Android WiFi/ Bluetooth Integration
 - Successful Senior Design Projects
 - BlueTag (2010) for Bluetooth
 - UMass Campus View (2010) for WiFi
Data Processing and Storage

Impact Data Collection
- Power Supply
- Processing
- Sensors
- TX/RX

Data Analysis
- Data Processing
- Impact Data TX/RX
- DB
- Power Supply
- UI TX/RX

User Interface
- Settings
- TX/RX
- DB Interface
- History
- GUI
Data Processing and Storage

- **Requirements**
 - Calculates rotational acceleration
 - Determines probability of concussion
 - Output within 500 ms
 - Store all impact data efficiently

- **Experience**
 - Software development for Bose
 - Data organization and analysis algorithm development for ECM
Impact Processing

- Requirements
 - Low power and lightweight
 - Inputs for at least 7 sensors
 - Tx/Rx Capable
 - Flash memory

- Experience
 - ATmega Microcontroller
 - Used in ECE 353
 - LED Cube
Impact Data Tx/Rx

- **Requirements**
 - Low power and lightweight
 - Effective range up to 150 m
 - Efficient data transfer rates
 - Secure

- **Implementation**
 - XBee
 - Successful Senior Design Projects
 - SAFE-T (2012) for XBee
Proposed MDR Deliverables

- Demonstration of Impact Data Collection
 - Accelerometer interfaced with processor
 - Helmet processor transmission

- Demonstration of Base Station/UI Interaction
 - Using test data
 - Receive from helmet
 - Run algorithm
 - UI able to receive and display test results
Thank You

Questions
Thank You

Questions
Questions
Questions
Preliminary Weight Analysis

- NFL Helmet Approximately 6lbs. or 2.722kg
- ATMega328P = 2g
- MEMS each approximately 1g
- Gyroscope approximately 2g
- Power approximately 23g
- Estimated total system weight (not including packaging) = 35g-40g

- 5% of helmet is approximately 136g