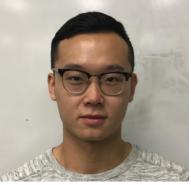
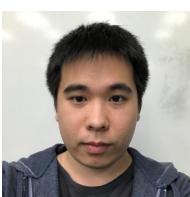

PDR Presentation SmartWheel


Yaroslav Burdin Jack Tam Bingjun Wang Bingze Li

Department of Electrical and Computer Engineering October 21, 2016

Electrical and Computer Engineering 2016

Team Members



Bingze Li EE

Bingjun Wang EE

Advisor Lixin Gao



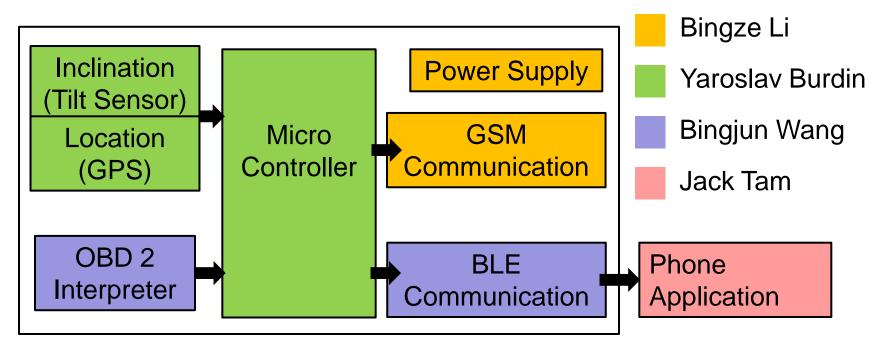
Jack Tam CSE

Yaroslav Burdin CSE

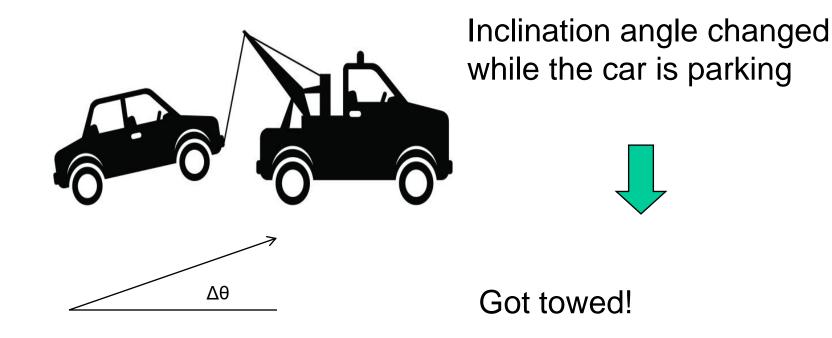
Problem

Existing Solutions

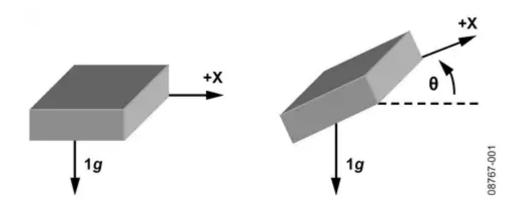
Our Solution


Develop a multi-purpose car device that will make owning and driving a car safer, more convenient, and more cost effective by implementing the following functions:

- Anti-Tow System
- Car Health Monitor



Block Diagram


SmartWheel Box

Change of angle

Change of acceleration

Acceleration on x-axis :

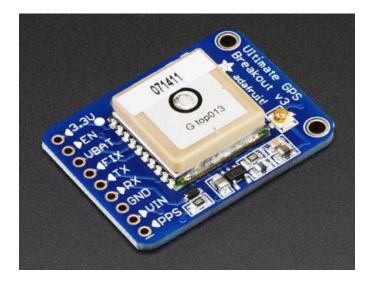
$$A_{X,OUT}[g] = 1 g \times \sin(\theta)$$

Inclination sensor ADXL335

Output Change at Xour Output Change at Your Output Change at Zour Detect the inclination change on xaxis by detecting the acceleration on x-axis

Change of voltage: -160mV to -600mV

				FF .
Self-Test 0 to Self-Test 1	-150	-325	-600	mV
Self-Test 0 to Self-Test 1	+150	+325	+600	mV
Self-Test 0 to Self-Test 1 Self-Test 0 to Self-Test 1	+150	+550	+1000	mV


GSM modem- SIM900A GSM model

Connect to microcontroller to send message when the inclination changed to a certain angle.

Message only, no GPRS involved

GPS Breakout- LLC 746

- Detect location
- Breadboard friendly

OBDII interpreter : STN1110 vs ELM327

	ELM327 v1.4	STN1110
Base microcontroller	PIC18F2580	PIC24HJ128GP502
Architecture	8-bit	16-bit
Processing speed	4 MIPS	40 MIPS
Flash (ROM)	32 KB	128 KB
RAM	1.5 KB	8 KB
Pin count	28	28
Available packages	PDIP, SOIC	PDIP, SOIC, QFN
Supply voltage range	4.5 to 5.5V	3.0 to 3.6V ¹
Supports all OBD-II protocols	yes	yes
ELM327 command set	yes	yes
Enhanced "ST" command set	no	yes
Firmware upgradeable	no	yes
Large OBD message memory buffer	no	yes
Low power mode	yes	yes
Supported UART baud rates	9600 bps to 500 kbps	38 bps to 10 Mbps
OBD message filtering	basic	advanced
Price each, for 1000 units	\$24	\$10
Price each, high volume	\$19	\$4.95

STN1110!

- High Performance
- Low Cost

STN1110

What we need from STN1110?

Speed
 (for anti-tow system)

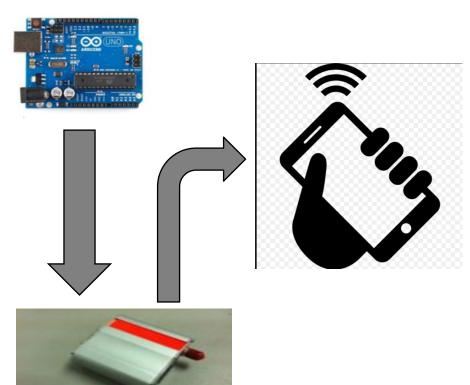
Problem Code
 (for car health monitor)

Raspberry PI 3

Processor speed from 900MHz to 1.2GHz

BLE on board

Electrical and Computer Engineering 2016


Communication

Requirements:

- data transfer
- Secure
- text immediately

Implementation:

- GSM MODEM
- Simcar
- Bluetooth

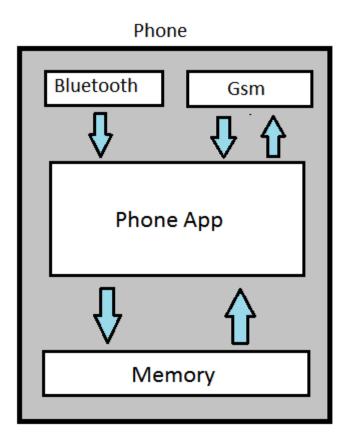
Communication

GSM MODEM	DEALER LOGIN Search here								
Simcar	SHOP	PLAN	SERVICES			IELP			
 Cheaper than before 	Phones SIM Device Financing				Π.				
 \$10=102 message 		ANS	5						
		\$10	\$ 20	\$ 25	\$ <mark>30</mark>	\$100			
	TALK & TEXT	5¢/min, 5¢/text	5¢/min, 5¢/text	2.5¢/min, 2.5¢/text	5¢/min, 5¢/text	5¢/min, 5¢/text			
	MMS	10¢/MMS	10¢/MMS	10¢/MMS	10¢/MMS	10¢/MMS			
	DATA	10¢/mb	10¢/mb	10¢/mb	10¢/mb	10¢/MB			
	EXPIRATION	90 DAYS	90 DAYS	30 DAYS	90 DAYS	1 YEAR			
		SELECT	SELECT	SELECT	SELECT	SELECT			

Communication

Bluetooth

• Benefit


Accuracy in LAN Operating range Inexpensive

Weakness

Data rate of only 1 MBps Battery use increased on devices cannot work in a long distance environment

Phone Application

Phone Application

Requirements:

- Location of car readily available to be displayed
- Low power consumption while idle
- Minimal memory usage
- User settings
- Process data sent from car device
- Run properly on Android phones

Implementation:

- Chart/graph speed and fuel consumption of car over time
- Alerts(Oil change, car being moved, broken parts)
- Obtaining location of car

Approximate Cost

Name	Quantity	cost
Raspberry pi 3	1	\$36
ADXL335	1	\$15
GPS breakout	1	\$40
STN1110	2	\$20
SIM900 modem	1	\$26
Other cost		\$15

Total cost: \$152

Gantt Chart

	PLAN	PLAN									
ACTIVITY	START	DURATION	18-Oct	25-Oct	1-Nov	8-Nov	15-Nov	22-No	29-Nov	6-Dec	13-Dec
	WEEK		1	2	3	4	5	6	7	8	9
Order parts	1	1									
Power supply	2	2									
GSM	4	2									
OBD II Interface	2	3									
Bluetooth	4	2									
Tilt sensor	2	2									
GPS	4	2									
Phone app functions	1	4									
Phone app format	4	2									
End to end implementaton	5	3									
MDR Report	7	3									
MDR Presentation	7	2									

MDR Deliveries

Group

- Have a set of data gathered from car and sent and displayed on phone **Bingze Li**
- Working power supply for SmartWheel box
- Able to send data to phone using GSM
 Yaroslav Burdin
- SmartWheel box able to sense inclination in appropriate situations
- Able to locate the car and send coordinates when requested

Bingjun Wang

- Obtain necessary information from OBD II
- Working Bluetooth data transfer when in range
 Jack Tam
- Create layout of android app
- Implement ways to process and display given input data