UMassAmherst Preliminary Design Review

Senior Design Project: WaterMainia

October 21, 2016

UMassAmherst WaterMainia

Greg Boudreau

Team Manager Michael Moran

Jon McAvoy

Professor Hollot

Advisor

What is the Problem?

Water Conservation

Water Pipe Damage

How Significant is the Problem?

According to the US EPA

- The average household leaks 10,000 gallons of water per year
 - Approximately 1 trillion gallons of water leaked worldwide per year

Effects on Individuals

- Basement floods are a persistent and costly issue in our society
- Even a small leak is incredibly costly over time
- In early 2014 there was a burst pipe over the winter break in Marcus Hall
- Could have ruined research projects years in the making

Effects on Groups

- Water conservation is a serious issue and affects millions
- On the heels of a large drought and water ban by the Umass administration
- Detecting and stopping leaks can save massive amounts of water

Existing Solutions

Leak/Pipe Burst Detection:

- Visual Inspection
- Audio-sonar listening
- Thermal imaging
- Water meter monitoring
- Water detection sensor

Damage Mitigation:

- Sump Pumps
- Drainage systems
- Flood/Homeowner's Insurance

LeakDefense

Key Features

- Meter and shutoff placed on the main water line
- System can only be accessed from a single wall unit
- Programmable
- Sets off audible alarm on detection

Advantages to our System

- Remote access
- Alert sent to phone

WaterHero

Key Features:

- Electronic motor for water shutoff
- Works over wifi
- Magnetic field flow sensor
- Cost \$199
- Integrated with phone application

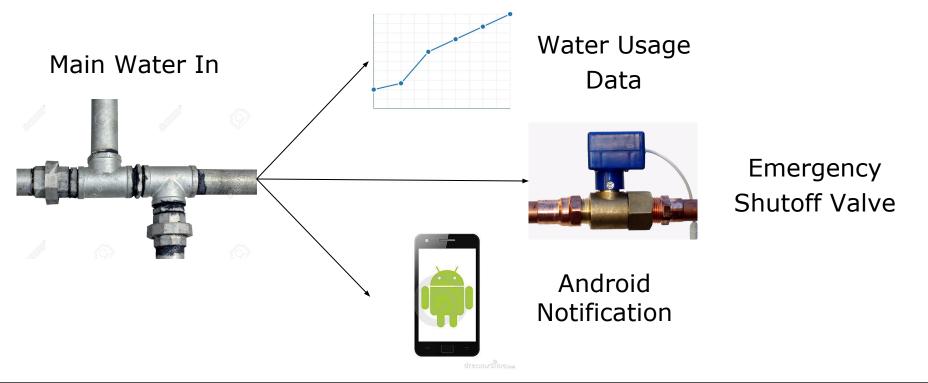
Advantages to our system:

- Potential for networking
- Works wider variety of plumbing systems

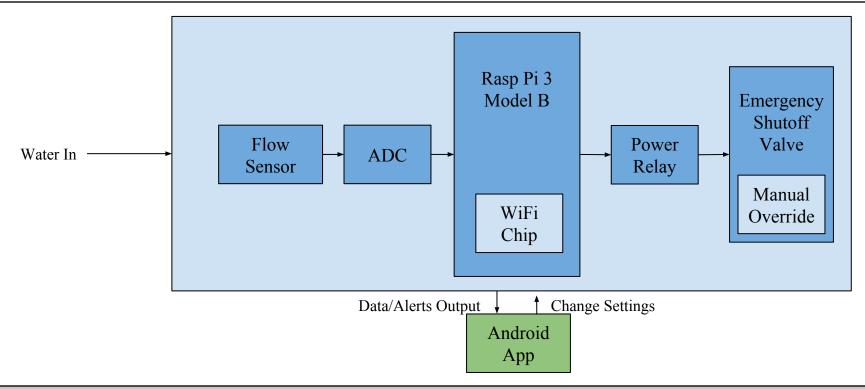
Our Solution - WaterMainia

Sense

Alert

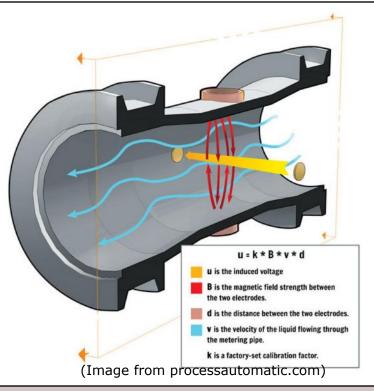


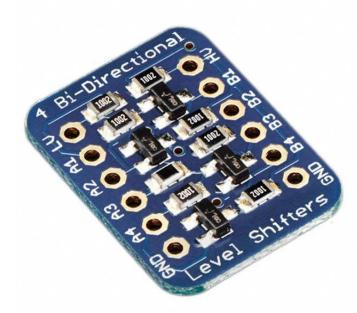
Requirements Analysis: Specifications


- 1. Must be implemented using 3/4" pipe
- 2. Water flow data is metered and recorded
- 3. Store data for previous two years
- 4. Display water consumption data in tables, line charts and pie charts
- 5. Close water main & notify owner within one minute from pipe burst
- 6. Alerts owner of any sized leaks
- 7. Power < 50W
- 8. Cost <\$500 budget

UMassAmherst Input/Output

12


Block Diagram


Block 1: Flow Control Subsystem

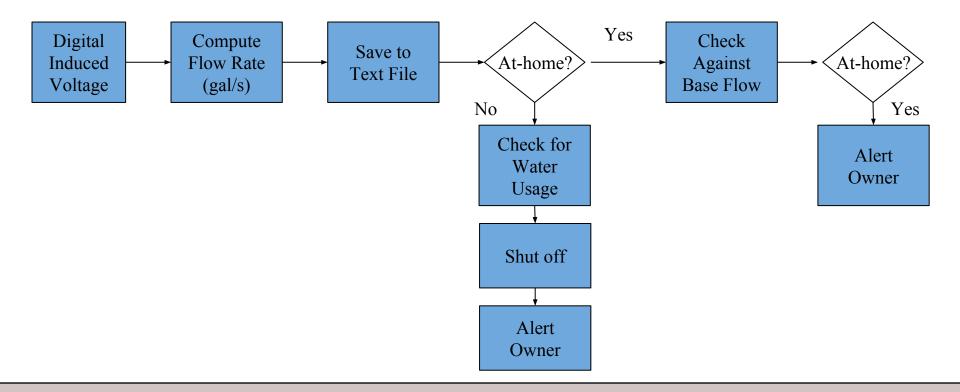
Electromagnetic Flow Meter

- Pipe addon constructed by student to save money (commercial EM flow control will cost upwards of \$750+)
- Water flow in pipe will be measured
- Flow data sent to Pi for analysis
- Aiming to construct device for under \$100

Block 2: Analog to Digital Converter

MCP3008

- Converts DC Voltage to Digital Signal for Raspberry Pi GPIO
- 10 bit accuracy
- Sample Rate: 200 ksps
- Passes voltage difference between channel 0 and 1 to SBC
- Reading Range, 0-3.3V
- Cost: \$3.75


Block 3: Single Board Computer

Raspberry Pi 3 Model B

- Broadcom Quad Core Processor @ 1.2GHz
- 1 GB RAM
- WiFi built in
- Raspbian OS
- 12.5W
- Cost \$35

Block 3: Software

G

17

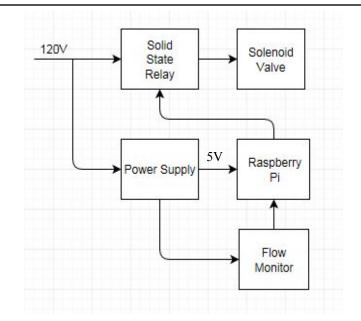
Block 4: Emergency Shut off Valve

110V AC Solenoid Valve:

U.S. Solid Solenoid valve-

- Stops/prevents waterflow
- 18W power rating
- Temperature Range: -10°C 120°C (14° F - 248°F)
- 1.6 lbs
- Cost \$26.99
- 110 volts AC; voltage range + or 10%
- Lifespan: ~200,000 switches

Block 5: Android App



- Display water usage data to users with parameters including flow rates, usage rates, et al
- Receive notifications from Raspberry Pi
- Allow user to switch between Vacation and At-Home modes
- Allow user to override the shut-off valve

Power

Requirements:

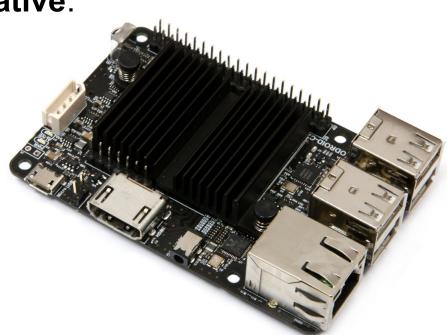
- Input=120V AC
- ~ 12.5W for cpu
- ~ 18W for motor
- ~ <15W for flow monitor
- Overall goal <50W power consumption

*If power fails Emergency shutoff fails in the closed position and will have to be manually opened

Subsystem Alternatives

Flow Monitor Alternative: UltraSonic Sensor

Advantages:


- Easier fabrication
- Easier installation (clamp on)
- Disadvantages
 - Subject to interference from pipe wall or air between sensor and pipe
 - Built in acoustic discontinuities in pipe
 - Requires liquid contaminants: 100 parts per million of 100 micron or larger suspended particles, or bubbles

Subsystem Alternatives

Single Board Computer Alternative: ODROID-C2:

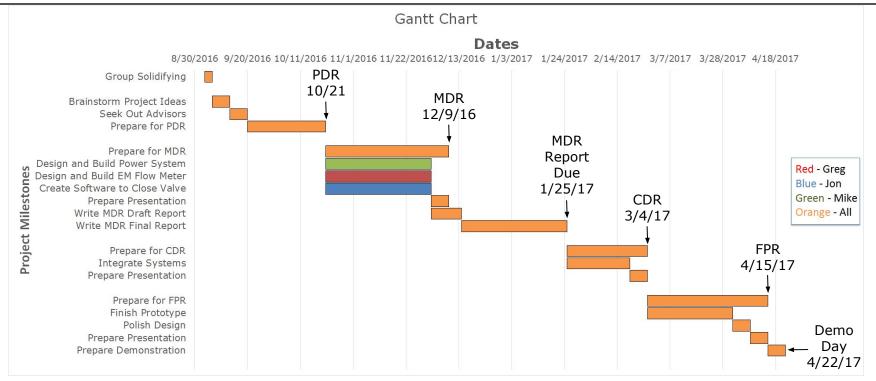
- Cost- \$59.99
- 1.5Ghz quad core CPUs
- 2Gbyte DDR3 SDRAM
- Memory-MicroSD Card/Flash Drive
- Power- 2.5A@5V= 12.5W
- I/O- 40pin GPIOs + 7pin I2S
- Wifi / Bluetooth built it

Subsystem Alternatives

Emergency shutoff Alternative:

Duda Diesel Solenoid valve

- 12V DC
- Stops or opens waterflow in one direction
- Max power consumption =30W
- lifespan = ~200,000 switches
- Temperature Range: -5°C 80°C (29°F 176°F)
- 2.08 lbs
- Dimensions: L=99mm H=135 mm
- Cost \$69.64


23

UMassAmherst MDR Deliverables

Goal: Have the vacation mode functionality implemented

Gantt Chart

UMassAmherst Thank You

Questions