UMassAmherst Final Presentation Review

Senior Design Project: WaterMainia

April 20th, 2017

UMassAmherst WaterMainia

Greg Boudreau

Team Manager Michael Moran

Jon McAvoy

Professor Hollot

Advisor

What is the Problem?

Water Conservation

Water Pipe Damage

Our Solution - WaterMainia

Sense

Detect

Alert

System Specifications and Deliverables

- \checkmark 1. Implemented using 3/4" pipe
 - 2. Water flow data is metered and recorded
 - 3. Store data for previous two years
 - 4. Display water consumption data in tables, line charts and scatter plots
 - 5. Close water main & notify owner within one minute from pipe burst
 - 6. Alerts owner of leaks and provides options
 - 7. Power < 50W
 - 8. Cost <\$500 budget

System Structure - Block Diagram

Water Flow Detection

System Specifications and Deliverables

- 7 1. Implemented using 3/4" pipe
 - 2. Water flow data is metered and recorded
 - 3. Store data for previous two years
 - 4. Display water consumption data in tables, line charts and scatter plots
 - 5. Close water main & notify owner within one minute from pipe burst
 - 6. Alerts owner of leaks and provides options
 - 7. Power < 50W
 - 8. Cost <\$500 budget

Hall Effect Sensor

 Mechanical Flow Meter with a magnet attached to one fin of a turbine. On every revolution a square pulse is generated when the magnet passes the semiconductor mounted to the pipe.

PCB

System Specifications and Deliverables

- 1. Implemented using 3/4" pipe
 - 2. Water flow data is metered and recorded
 - 3. Store data for previous two years
 - 4. Display water consumption data in tables, line charts and scatter plots
 - 5. Close water main & notify owner within one minute from pipe burst
 - 6. Alerts owner of leaks and provides options
- ✓ 7. Power < 50W</p>
 - 8. Cost <\$500 budget

Vacation Mode

At Home Mode

<u>UMassAmherst</u>

Data Transfer

UMassAmherst Android App

Budget

- Solid State Relay \$11.28
- MCP3008 ADC \$19.86
- Raspberry Pi 3 SBC \$41.99
- GPIO Expansion board \$9.90
- 110V AC Solenoid Valve \$26.99
- Hall effect sensor \$10.00
- Power Cord \$15.64
- Bridge Rectifier \$6.75
- 5V Voltage regulators \$6.45
- PEX pipe fittings \$28.00
- Transformer \$16.56
- Micro USB Charging Cable \$7.15
- Micro SD card \$20.99
- Server \$25.00
- Raspberry Pi 3 case \$7.75

<u>Total:</u> \$243.00

Demo Costs: \$180

System Specifications and Deliverables

- Implemented using 3/4'' pipe
 - Water flow data is metered and recorded
- Water flow data is metered and re
 Store data for previous two years
 Display water consumption data in Display water consumption data in tables, line charts and scatter plots
- **5**. Close water main & notify owner within one minute from pipe burst
- Alerts owner of leaks and provides options
 - Power < 50W
 - Cost <\$500 budget

Μ

Demo

Thank you! Any Questions?