Preliminary Design Review

Team QuickTab October 19, 2016

Department of Electrical and Computer Engineering

Advisor: Professor Kelly

QuickTab (Intuitive Tablature Generation)

Lindsay Manning EE

Jacob Prescott EE

Department of Electrical and Computer Engineering

Advisor: Professor Kelly

Teaching/Learning Guitar for the First Time

Taking the first step to learning the guitar can be daunting for a number of reasons:

- Beginners do not read musical notation
- Professional lessons are costly
- Interpreting verbal instructions can be a challenge

Learning with Tablature

As an alternative to contemporary styles of musical notation such as sheet music, our project utilizes a system of notation known as tablature.

Insufficient Methods of Transcription

 No Pre-existing Technology

> Currently, there is no method to transcribe live acoustic performances directly to tablature

- Current Standard Method
 - Manually enter in every note
 - Transcribe sheet music to tablature notation

Project QuickTab

- A hassle-free notation process
- Designed to transcribe notation directly from acoustic stimulation
- Suitable for all levels of proficiency
- Can be used as a teaching aid

Effect on the Musical Community

- Will make tablature creation accessible to more than simply the computer literate
- Empowers guitar teachers with the ability to generate visual guides for their students
- Simply put, QuickTab circumnavigates the tedious process of manual transcription by collecting rhythms and pitches as they are played

Previous Designs

Laser Pitch Detector

- M3i Technologies
- Uses lasers to determine string length i.e. current fret being played
- Alternative way to record music
- Set for commercial release in 2012 (never released)

- AutoTabber
 - SDP15
 - Used 6 pickups to detect signal from each string
 - Ultimately unsuccessful

Our Solution

- Six Individual Sensors attached to strings
 - Attached to the bridge of the guitar
 - Sensors measure frequency in which strings vibrate
 - Data received will be converted into tablature based off of the frequency
- Storage and Recording
 - Will allow for various modes of saving your songs, either via Bluetooth or USB or onto an SD Card
- User Interface
 - Easy-to-use UI on the device
 - Buttons to both start/stop a recording and to choose a recording method

Block Diagram

Department of Electrical and Computer Engineering

Input and Output Specifications

- Determine String & Fret
 - By interpreting the frequency received by individual accelerometers
- Uphold Recording Fidelity
 - Digitally process and/or filter the signal to maintain consistency with original notes and rhythms
- Transcribe
 - Recorded Signals to Visible Tablature

The Code

- Design Goals
 - Efficiently parse received signals into frequencies while maintaining accurate rhythms
 - Transcribe parsed signals into a standard tablature filetype (*PDF*, *GPX*)
 - Concessions must be made for imperfect timing
 - Identify notes & chords (optional: slides, hammer-ons, pull-offs)

Raspberry Pi

- Implementation must be able to comply with the constraints of the Raspberry Pi 3
 - 1.2GHz 64bit Quad Core Processor
 - 1GB RAM
 - 40pin extended GPIO

Power

- Requirements
 - Input of 8V 30V as designated by the Raspberry Pi
 - Device must be lightweight, long lasting and power efficient (located on strap)
 - Stable power source (PCB Component)
 - Power Consumption will determine if processing is done on or off board

Sensors

- Requirements
 - 6 Sensors that are able to accurately relay the frequency of the strings when played
 - Lightweight, minimally affects the sound and feel of the guitar, guitar should be easily tunable once sensors attached
 - Easily attachable to the guitar
 - Able to transmit data faster than new input is received

User Interface

- Requirements
 - Easy to use
 - Allow the user to start/stop recording
 - Switch between recording modes
- Implementation
 - GPIO of the Raspberry Pi
 - Buttons and LEDs on the device to display current selection
 - Audible feedback on when recording has started/stopped
 - Metronome & Calibration (stretch goals)

Modes of Storage and Transmission

- Requirements
 - Hassle free use for each method
 - Data output is the same
- Implementation
 - Bluetooth Integration
 - SD Card
 - USB Connection to PC

Proposed MDR Deliverables

- Confirm sensor type
- Ability to record one string's rhythms and notes
- Verify timing and establish metrics for delay analysis
- Observe power consumption

Thank You

Questions?

Department of Electrical and Computer Engineering