
1
SENIOR DESIGN PROJECT 2017, TEAM19, FINAL PROJECT REVIEW

 QuickTab
 Final Project Review

Joseph Biegaj, EE, John Bonk, EE, Lindsay Manning,
EE, and Jacob Prescott, EE

Abstract​— QuickTab is a system that enables guitarists to
produce tablature, a common form of musical notation that
indicates finger position rather than pitch. QuickTab determines
these finger positions based on the mechanical vibrations
detected in the strings and body of the guitar.

I. I​NTRODUCTION

T​ABLATURE is an alternative form of representing music for

stringed instruments which simplifies the confusing notation
associated with traditional sheet music into an easy and
intuitive format that is perfect for beginners and experienced
musicians alike. Unfortunately, the existing software that sets
the convention for generating tablature, Guitar Pro​[1]​, is both
expensive and time consuming to learn. With QuickTab we
eliminate both the need for expensive software and an arduous
transcription process.

QuickTab allows the user to generate tablature by simply
playing the desired musical phrase on a guitar. Designed to be
lightweight and unobtrusive, QuickTab attaches onto the base
of the guitar by the bridge. A User Interface enables the user
to calibrate the device to the guitar’s specific tuning as well as
dictate the beginning and ending of the recording. QuickTab is
designed to provide more accessibility and ease of use for the
tablature creation process.

As a commercial tool, QuickTab is ideal for guitar
instructors who want to give their students something to take
home and practice after the lesson. By using QuickTab they
will be able to efficiently create customized lessons for their
students, allowing them to hone in on that particular student's
areas of difficulty, resulting in more effective teaching.

QuickTab would also be incredibly impactful on the
musically community as a whole. Services like Songsterr​[2]​,
which hosts an interactive, online repository of tab which
anyone can add to or learn from, would benefit greatly from a
product like this, as simplified tablature generation enables
more people to contribute to the database, increasing the
availability and quality of tab. The use of QuickTab heralds
growth in the musical community as it provides users who

J. Biegaj from East Hampton, CT (E-Mail: jbiegaj@umass,.edu)
J. Bonk from Northborough, MA (E-Mail: jbonk@umass.edu)
L. Manning from Hopkinton, MA (E-Mail: lmanning@umass.edu)
J. Prescott from Mashpee, MA (E-Mail: jprescott@umass.edu)

might have been discouraged from learning guitar, due to the
cost of buying music or a lack of musical education, with
ready accessibility to a comprehensive library of tablature; the
comparatively cheap and easy way to learn guitar.

So far there are no products in the market that can
accomplish what we are trying to do. However several
attempts have been made, the most recent and most like ours
is ​AutoTabber ​from SDP15. Team ​AutoTabber attempted to
use six hexaphonic pickups to capture the signal off each
string which would then be fed into a microcontroller where
the frequency spectrum would be used to determine the fret
that was played on the string​[3]​. Another example comes from
the German company ​M3i technologies​; ​their laser pitch
detector used lasers coming from the bridge of the guitar to
determine the length of the string being played and thus the
fret being pushed​[4]​. It was set for commercial release in 2012.
However, like team ​AutoTabber​, ​it was ultimately
unsuccessful.

What makes QuickTab different is how we are generating
our signal. ​AutoTabber used pickups, ​M3i Technologies used
lasers, and QuickTab uses a single accelerometer in
conjunction with six flex sensors, which senses the vibrations
of the guitar and strings as a note is played, giving us a cleaner
signal to work with and ultimately making it possible to
generate the tablature we desire.

Specification Value

ADXL345

Weight 1.27g

Height 3.14mm

Length 25mm

Width 19mm

Power Usage 75.9𝜇W (Active)
0.25𝜇W (Standby)

Raspberry Pi

Weight 45g

Height 10mm

Length 85.6mm

Width 56.6mm

Power Usage 4W

 ​ ​Table 1​: Project Specifications

2
SENIOR DESIGN PROJECT 2017, TEAM19, FINAL PROJECT REVIEW

The specifications given in ​Table 1 ​show that the
electronics attached to the guitar will be lightweight and
relatively small, accomplishing one of our goals for the project
to be sufficiently small and lightweight so that when attached
to the bottom of a guitar, it will not be too cumbersome for the
user. Power consumption is not issue because we are not using
our own power supply. As a stretch goal we discussed using a
power supply we designed ourselves, which would mean again
taking weight considerations into account as well as power
usage by the device. However, we decided to forgo this
addition.

II. DESIGN

A. Overview
Our project consists of five main blocks: sensors, user

interface, data logging, signal processing, and tab compiler.
Each of these pieces is required for our project to be fully
complete.

Before we go over each of the blocks in detail, allow us to
summarize the main functions of our system. When the user
decides to create tablature, they power up QuickTab and
start/stop the recording using the user interface. As soon as
they begin to strum the guitar, the sensors register activity and
transmit their data to the Raspberry Pi. After recording the
user’s inputs on the guitar, two files are created by the Pi and
are then transferred to our signal processing block where the
data is parsed and analyzed using Short Term Fourier
Transforms and logical comparators. Once the frequencies
have been identified, the entire recording is turned into
tablature and available to view.

Since MDR we have done numerous things to improve the
project. First we needed to decide on which sensors to use to
detect the string vibrations. Once this was done, a custom PCB
was designed to interface these sensors and the UI (buttons)
with the RasPi. The custom PCB included buttons and LEDs
for the purpose of user control and feedback. Lastly the data
recorded by the vibration sensors and the accelerometer were
then transferred to a computer via email or ethernet. Our
biggest challenge here was having the data from the vibration
sensors and the accelerometer coordinate to produce accurate
tablature. Once these two pieces of data were synergized, we
were able to effectively implement the Tab Compiler which
produced a visual representation of what the user had played
during their recording.

B. Sensors
The purpose of the sensors is to measure the mechanical

vibrations of a guitar body and to detect when a string is used.
Only a single accelerometer is required to measure the
cumulative frequency of the guitar body at a given instance.
The complex waveform output can then be broken down via
Fourier transforms where individual Fourier components can
be identified. Vibration sensors, located next to the strings, are
designed to detect when a string is played. The vibration
sensors are made of piezo film material. When a string is
played, it hits the adjacent vibration sensor. The analog output
of the sensor increases with the amount of flex it experiences.
With the data received from the digital accelerometer and the
vibration sensors, the information required to determine hand
position is secured.

3
SENIOR DESIGN PROJECT 2017, TEAM19, FINAL PROJECT REVIEW

 1) Accelerometer:
QuickTab utilizes a MEMS accelerometer to measure the
vibration of the a guitar’s body. The ADXL345​[5] 3-axis digital
accelerometer from Analog Devices measures the static
acceleration of gravity, as well as dynamic acceleration
resulting from motion or shock. The device has a selectable
measurement range of ±2 g, ±4 g, ±8 g, or ±16 g for each axis
of the accelerometer; X, Y, and Z. Higher ranges allow for the
tracking of high speed movements (i.e. vibrations). The device
has an adjustable transfer rate up to 3.2kHz, which is suitable
for our design since the guitar produces frequencies up to
approximately 1kHz. The 32-level FIFO buffer allows the
ADXL345 to store data to be read out at the user's discretion.
The ADXL345 is surface mounted on a pre-assembled
breakout board distributed by Adafruit. The package is
positioned at the bridge of the guitar and oriented with the
z-axis orthogonal to the strings. Our final positioning for the
ADXL345 kept it in the original place at the base of the
bridge, as this was the ideal place to collect vibration data.

 ​ Fig 2​: Implementation of the Vibration Sensors

 2) Vibration Sensors:
The next step for data acquisition is to determine what

string is being used when a note is played. To attain this
information, vibration sensors are placed next to each string
(Fig. 2​). Each piezo vibration sensor is made of flexible

polymer film. The resistance of the film changes as it flexes
back and forth. The voltage output is then inputted into an
analog-to-digital converter to allow for use of the Raspberry
Pi's digital input pins. The MCP3008 ADC interacts directly
with the RasPi’s SPI. The sensor strip is placed at an angle
relative to the strings to reduce the sound of buzzing and the
resulting harmonics that are produced by the strings hitting the
sensors.

Data from the sensors are logged by the RasPi. Within the
python code that controls data logging, threshold values are
set for each of the six sensors. These thresholds limit the
amount of data produced upon a string being played. Multiple
vibrations are recorded per note played and are filtered out
based upon the intensity of the vibrations. Despite the
threshold values in place, multiple vibrations are still recorded
and placed into an array. Each entry in the array contains the
number of the vibration sensor (numbered one through six)
and the timestamp corresponding with when the vibration
occurred. In Matlab, further data filtering occurs and duplicate
sensor data is eliminated based on the time differences
between data entries. If multiple entries are recorded from the
same string within 500ms, then all but one entry is eliminated.
The remaining timestamps are used to run FFTs at specific
times.

The final implementation of the sensors ​(Fig. 2​) was
successful. The timing of each note was recorded accurately
and the string used can be identified. The tray designed to
house the sensors is made of a lightweight prototyping board.
The tray is attached to the guitar using velcro. The sensor tray
can be easily removed and replaced. The sensor sub-system
was successfully incorporated into the QuickTab design.

C. User Interface
The User Interface(UI) is an essential part of project

QuickTab, allowing the user to control recording, calibration,
and power, all with visual feedback. A custom PCB designed
in EagleCAD was used to implement this portion of the
project, consisting of a series of buttons and the A/D
conversion of the vibration sensors. The final version of the
PCB can be seen in ​Fig. 3​. On the right side of ​Fig. 3​, you can
see the A/D converter used for the vibration sensors..

The PCB contains three buttons; record, calibrate and OFF.
It also contains three LEDs pertaining to each of these buttons.
The red LED, next to the record button, is lit when the user is
currently recording. The green button, next to the OFF button,
is lit while recording and when the RasPi is ready for to
receive additional inputs. ​Fig. 3 shows the PCB as well as the
three buttons and their corresponding LEDs. You can see
where the PCB was placed in ​Fig. 4​, just to the side of the
strings. This allows the connections to the vibration sensors to
be short while still being out of the way of the user. The user
interface is managed by the python script running on the
RasPi. Interrupts are used for each of the buttons.

4
SENIOR DESIGN PROJECT 2017, TEAM19, FINAL PROJECT REVIEW

One of our goals since MDR was to eliminate the need for a
monitor to display the RasPi. To achieve this, additions were
made to the RasPi startup code that would launch the python
script needed for the UI and recording/sending the data. Any
functionality the user would need was available on the UI and
if troubleshooting was needed, the monitor was still available
during demo day.

 ​ ​Fig 3​: Final Printed Circuit Board Design

 ​Fig 4​: Implementation of the User Interface
Transmission of data was another portion that indirectly tied

into the UI. Upon finishing a recording, the data from both the

vibration sensors and the accelerometer would be written into
.py files which would then be emailed or transferred via USB.

As seen in ​Fig. 4​, the UI position on the guitar has changed
since the MDR report. At that time we were planning on
placing

The UI of this project was a success. The user was capable
of having all the functions needed to accurately record
tablature all on a small PCB. The vibration sensors, PCB, and
RasPi were all successfully attached to the guitar and secured
in a neat fashion. They were out of the way, provided minimal
modifications to the guitar, due to the velcro that held them
on, and were very light weight. This accomplished all the
goals of our project while still succeeding in providing the
user with functionality.

D. Data Logging
In order to reconstruct the guitarist’s performance in

tablature form, the signals received from the accelerometer
and vibration sensors are recorded by a Raspberry Pi that
accurately stores and organizes the data without missing any
data points. Specifically, the method by which the data is
collected must adhere to a few functional requirements. First
and foremost, the data emitted by the ADXL345 must be
collected by the Pi at the same sampling rate in order to
accurately interpret every note played on the guitar.
Additionally, the data collected from the accelerometer and
vibration sensors must be aligned in the file with regard to
time such that the code for generating tablature will have data
for determining the frequency and string plucked as well as a
timestamp that indicates that these two measurements are
correlated and should work together to a new note on our
tablature. The precise mechanism by which new notes will be
added to the tablature will be discussed in Section F.

In order to properly collect and organize the received
signals, we built upon the fundamentals that we learned in
Data Structures & Analysis as well as any other basic
programming courses we took. Because our code utilizes
Python, we familiarized ourselves with the libraries available
for data collection, as well as compiler differences such as an
inability to explicitly set the clock rate. While software is the
bulk of this technical block, it is important to consider the
intrinsic link between hardware and software. Drawing from
our experiences in Computer Systems Lab, we manually
configured our GPIO to operate under the parameters we gave
it and ensured that only digital signals were sent to the
Raspberry Pi, as it does not support analog inputs without
analog-to-digital conversion.

In order to ensure full functionality, this block required
three tests. Firstly, the ability of the Pi to collect samples at the
same rate as they are emitted by the ADXL345 must be tested
by recording samples of notes played at up to 1600Hz. If
samples of these high frequency notes could be accurately
recorded and converted to the proper frequency in the Matlab

5
SENIOR DESIGN PROJECT 2017, TEAM19, FINAL PROJECT REVIEW

code, then the Pi must be working at the correct sampling rate
of the ADXL345. Otherwise, we would not be sampling at the
Nyquist Rate and would be unable to retrieve the correct
frequencies.

Secondly, the vibration sensor data must be precisely
logged with respect to time. We verified accuracy by playing
multiple notes with specific time delays between them and
observing the spikes in our received signals for confirmation
that these time delays are of the same duration.

Our third and final test brought the first two components
together. In order to verify that both sensors are aligned, we
viewed their data side by side and ensure that the spikes in
both sets of data occur at the same time. These three tests
together ensured the accuracy of our data logging both
individually and collectively.

Since MDR, we were able to satisfy all three of these tests
by making a few functional improvements. First, we increased
the baud rate of the Raspberry Pi from 100KHz to 1MHz.
This enabled us to retrieve all of the samples taken by the
accelerometer sampling at 3200Hz, as well as retrieve the
information sent from the vibration sensors. In order to verify
that the accelerometer was giving us useful data that did not
have terribly skewed harmonics, we adjusted our sampling
method from including all three axes to simply recording from
the z-axis, the one orthogonal to the strings. This allowed us to
stop taking the magnitude of all three axes and removed the
squared component of our signal. Also, in order to send the
data to be parsed by the Matlab code, we included code that
sent the files to an e-mail address so that the data was
available from anywhere.

E. Signal Processing
After the data has been recorded by the Raspberry Pi the

raw ADXL data and the data from the vibration sensors is off-
loaded to a PC where it is processed via our MATLAB code
and the correct frequency is determined. ​Fig. 5 shows data that
is sent from the data logging stage to be utilized by the
MATLAB code. First the vibration data is parsed through and
we attempt to eliminate any duplicates from the vibration data
by checking to see if we have multiple of the same string
appear in a row with a timestamp that differs by half a second
or less, because we remove any entry from the vibration data
that is closer than half a second this limits the speed at which
you can play to two notes per second. After the duplicates
have been removed from the vibration sensor data we iterate
through the array of strings detected to find each note played.
For each event that is detected we first run the data through a
bandpass filter based on which string was detected, we do this
to remove any extraneous noise and to eliminate any
frequencies that cannot appear on the string being played. This
helps to refine the FFT as well as make it easier for the logical
statements, which will be discussed later, to determine which
note is being played.

 ​Fig. 5​: Raw ADXL345 Output of A3 Being Played

Next we look at the timestamp for the event which is

detected, we take the time in seconds and multiply it by the
sampling frequency which gives us the exact sample that the
note starts on. Next we perform an FFT on the data at that
specific point that is 500 points wide. ​Fig. 6 shows the output
after an FFT is taken.

 ​Fig. 6​: FFT Showing Note A3 (220Hz)

After the FFT is taken we send the data through a series of

logical statements, using the function find peaks in order to
determine the maximum spikes and from there determine the
frequency of the notes that are being played. This process is
repeated for every event that is detected via our vibration
sensors. Fig. 7 shows a MATLAB printout of this stage, after
5 FFTs are taken.

6
SENIOR DESIGN PROJECT 2017, TEAM19, FINAL PROJECT REVIEW

 ​Fig. 7​: Printout for the Above Signal, Displaying Frequency

Due to the fact that determining accurate fret information
requires the knowledge of the base frequency of the string that
the note was played on, our system has a calibrate function
that allows you to change the stored values of the base
frequencies within the code. To do this you simply read in
calibration files from the ADXL and the same process from
above is performed except instead of printing out the tablature
at the end, the new values of the base string frequencies are
put into the frequency arrays.

F​. TAB Compiler

The TAB Compiler is responsible for taking the data
received from the signal processing and creating readable
tablature. To achieve this, ​(1) is used to determine the fret
played at given instance. The first necessary component to
produce accurate tablature is the frequency of the open strings.
This data is obtained when the user calibrates the device.
Calibration is important because even if the instrument is
slightly out of tune, the fret can still be determined. Then, the
string that was used when the note was played needs to be
confirmed. If the string can be identified, then the compiler
can determine what open string frequency to use in ​(1)​. The
next step is to take the frequency determined via the signal
processing method to calculate the number of semitones (n)
that separate the note of the open string and the note played.
Because each adjacent fret difference is exactly one semitone,
we can determine the fret being played as equal to n.

 ​ ​(1)

Tablature, such as the example depicted in ​Fig. 8​, uses
lines and numbers to represent the six guitar strings and the
frets used to create a note. To reproduce this form, arrays that
correspond to each of the six strings are filled with n values in
the order that they occurred in. The values will be printed as
tablature. The TAB Compiler has been completely
implemented, as the system is able to determine what string is
used when a frequency is measured. The output of the TAB
Compiler is the final product of the QuickTab.

Fig.8​: An Example of Tablature

III. PROJECT MANAGEMENT

MDR Deliverable Status

Identify 10 notes on one string with 90%
accuracy

Complete

Verify that latency is sufficiently low so that
we can record notes and rhythms within
100ms of being played

Not needed

 ​Table 2​: MDR Deliverables

We marked the first deliverable from ​Table 2 as Complete

because we can record and identify 10 notes on one string with
100% accuracy, identify two notes played at the same time on
two different strings, and identify three notes played in quick
succession on one string. Not only does this indicate end to
end functionality of our system, it also demonstrates the
individual successes of our subsystems. We accurately collect
data that we can parse to determine note frequency and the
beginning of each note. During the course of our work we
determined that our second deliverable was not going to be
necessary as when the deliverables were written we were not
sure if we were going to be doing the tablature conversion in
real time. If we did the conversion in real time, the deliverable
would have been relevant.

Team QuickTab has been able to successfully record data
from the accelerometer attached to the base of the guitar, take
that data and analyze it in MATLAB using FFTs to determine
the frequencies played. We have done several different types
of tests to show these accomplishments. These tests included:
playing notes simultaneously to prove that we would be able
to detect both frequencies, playing notes in quick succession
to illustrate that the FFTs will be able to detect each of these
frequencies, and finally: playing every other note on one string
to show that we can determine the correct frequency for an
entire string.

After MDR, we still had much to do. The User Interface and
TAB Compiler had to be created, the sampling rate had to be
corrected for the Data Logging, MATLAB had to be expanded

7
SENIOR DESIGN PROJECT 2017, TEAM19, FINAL PROJECT REVIEW

to incorporate all six strings, and the vibration sensors had to
be attached to the guitar and embedded into the system. The
User Interface and its custom PCB needed to be designed and
implemented to work in coordination with the Raspberry Pi to
give the user control over power, recording, and calibration.
The TAB Compiler needed to take suggested frequencies and
vibration sensor data to match correlating vibrations and
frequencies to give a print out of what was played on a
Tablature sheet. Data logging needed adjustment because the
sample rate did not give enough bandwidth to be able to
support the frequency range of an entire guitar. The MATLAB
needed to be modified to support determining the frequency
on any string without knowing which is being played
beforehand. Vibration sensors had to be placed onto the
strings and implemented into the project to identify when a
string was played to correctly determine the string a given
frequency was played on.

Every single item on our “to do” list was completely
checked off. In the end, we were able to generate a fully
working project that generated tablature with ninety percent
accuracy under reasonable circumstances. The vibration
sensors functioned perfectly in conjunction with the
accelerometer to collect the specific data required by our code
to determine the strummed frequencies; our User Interface
functioned ideally for the purposes with which it was
designed, providing valuable feedback and performance; the
data was collected accurately and consistently and transferred
to our code with efficiency; the logic of our code was
sufficient to determine the frequencies and times at which
notes were played; and finally, the tab compiler visually
displayed all of the data we had collected with precision and
grace.

Each group member brought a set of skills to the group;
Jake and Joe both have extensive experience with both coding
and the guitar, while Lindsay and John have experience with
coding and the hardware components used in the project.
Together these skills allowed us to create a working project,
from end-to-end. We feel that our team has worked well with
each other as we understood that this was a group effort that
required communication of what we were working on, what
we were having problems on and the progress each of us had
made. We had weekly meetings with our advisor to convene
and speak about progress made, solutions to problems, and our
goals for the week. This helped us keep on top of things, stay
informed of each other's progress, and refocus our efforts
towards critical tasks that had to be completed.

From PDR to MDR, our primary goal was getting accurate
data from the accelerometer that could be analyzed using
MATLAB. Each of us helped on the python code and the
accelerometer setup, and the MATLAB coding was
spearheaded by Jacob and Joe with the assistance of Lindsay
and John. This was the most crucial part of the project and

also a prerequisite for other parts, which is why we worked
together as we could not split up the project until this was
complete.

Since MDR, our group made significant progress with
Project Quicktab. Up to MDR our project was focused mainly
on getting results from the accelerometer. Because of this our
group was very concentrated on successfully completing and
progressing this goal, which led us to have less individual
goals than what our evaluators would have preferred. After
MDR, because we were able to get results, we were able to
each have clear and achievable goals for each subsection of
our project. As shown in the block diagram, John was in
charge of the UI, Lindsay was in charge of the vibration
sensors and the accelerometer, Jake was in charge of the RasPi
python scripts/data logging, and Joseph was in charge of the
MATLAB/signal processing portion of the project. Each of us
were able to work on our parts efficiently, and therefore there
were no bottlenecks for our project. From time to time there
would be problems with different sections, but when these
issues did arise we were able to effectively communicate and
problem solve together. Each of the group members has
contributed to this successful project. We are proud to say that
we are the first group who has attempted a project like this
that has had it working consistently.

Another success of our project was its cost. Our project was
relatively inexpensive compared to its alternatives such as
Guitar pro​[1]​. As you can see in ​Table 3​, the majority of our
cost is from the RasPi and the vibration sensors.

 ​Table 3​: Development and Production Cost

IV. CONCLUSION
At the end of Senior Design Project, Team QuickTab

successfully created a prototype for automated tablature
generation that operated at a ninety percent success rate. Each
subsystem operated with individual success and met the goals
and requirements that we had pursued from the beginning.

For our piece by piece breakdown, we shall look at each
subsystem individually. Spearheading our sensors, Lindsay
accomplished the objective of using the ADXL345 to pick up
the vibrations in the guitar from which we determined the
frequencies. She also met our goal of determining which string
was played and at what time by using flex sensors resting on

8
SENIOR DESIGN PROJECT 2017, TEAM19, FINAL PROJECT REVIEW

each string.
John accomplished an implementation of the User Interface

that was intuitive, entirely accurate, and well-designed. In
addition, John also introduced additional functionality to our
system by setting up the RasPi to run without the need for a
monitor by running the code as soon as it was powered.

Joe fully implemented the Matlab code with all of the logic
and Fourier transforms necessary for the code to interpret the
vibrational data with sufficient accuracy. Within his Matlab
code was also additional code segments for handling guitar
calibration so that the code could always accurately determine
the fret played.

Jake ensured that the data collected by the Raspberry Pi was
collected from the correct locations of the ADXL345 and
stored in a reliable way so as to be correctly interpreted by the
Matlab code. Additionally, he ensured that the final output of
our project was precise, according to the conventions of
traditional tablature.

 ACKNOWLEDGMENT
We would like to thank Professor Kelly for his guidance

and support. We would also like to thank our evaluators
Professor Bardin, Professor Kundu and Professor Hollot for
their invaluable feedback.

 ​REFERENCES

[1] G. P. 6, "Guitar pro 6 - Tablature software for guitar, bass, and other
fretted instruments,". [Online]. Available:
https://www.guitar-pro.com/en/index.php.

[2] "Guitar tabs with rhythm," Songsterr Tabs with Rhythm, 2017. [Online].
Available: https://www.songsterr.com/.

[3] T. Alsagoff, M. Murphy, M. Shtilman-Minkin and M. Wojick,
"AutoTabber: A Frustration-Free Guitar Tabbing System", 2014.

[4] P. Ridden, "System uses lasers to detect the pitch of a guitar string
before a note is played", ​Newatlas.com​, 2011. [Online]. Available:
http://newatlas.com/laser-system-detects-guitar-string-pitch/19278/.
[Accessed: 21- Dec- 2016].

[5] Analog Devices, "3-Axis, ±2 g/±4 g/±8 g/±16 g Digital Accelerometer,"
in Analog Devices. [Online]. Available:
http://www.analog.com/media/en/technical-documentation/data-sheets/A
DXL345.pdf. Accessed: Dec. 21, 2016.

[6] "SQ-MIN-200 NANO-POWER TILT AND VIBRATION SENSOR," in
SignalQuest​, 2014. [Online]. Available:
https://signalquest.com/download/Tilt%20and%20Vibration%20Sensor
%20SQ-MIN-200.pdf. Accessed: Dec. 22, 2016.

