
1
SENIOR DESIGN PROJECT 2017, TEAM 16, MDR

Abstract — Step is a virtual reality system that will change the
way users interact with virtual worlds through enhanced
immersion. Unlike most virtual reality systems, the user’s
movements will play a role in the virtual environment, as a
user’s walking, running, and other physical movements will
correspond to movements in the virtual world. While making
virtual reality more realistic, it will also improve user’s health
and provide a platform for realistic first responder training.

I. INTRODUCTION

Modern virtual reality (VR) applications fail to engage the
user in a truly realistic way. They are static experiences that
create environments that move around the user as opposed
to dynamic experiences that allow the user to move through
the environment. Peripheral devices currently on the
market, such as Google’s Daydream controller [1], try to
improve this static experience by adding motion based input
to make the user feel more immersed, yet still do not allow
the user to move through the environment or have truly
realistic interactions.

Step is designed to free the user and allow them to explore
virtual worlds in a natural and intuitive way. The user will
be able to interact, move, and feel the environment around
them without wearing any additional hardware beyond the
VR headset. The user's hand and arm movement is detected
using Microsoft’s Kinect camera while the user moves on
an elliptical. Motion on the elliptical is translated into
motion in the virtual environment. The virtual environment
is developed using the Unity game development suite and
deployed to an Android smartphone placed inside the user's
headset.

The societal significance of fixing this problem is
that virtual reality could be used as a tool which engages
people to exercise more, gives more educational
experiences, and provides adequate first responder training.
Obesity is a growing problem in America. Obesity can lead
to other illnesses from chronic to acute, such as diabetes,
high blood pressure, and even cancer [2]. If virtual reality
incorporated the actions made by people outside the game
then more people would be inclined to play the game and
exercise. Virtual reality could also be an educational tool
where people can visit other places without physically
being there. For instance students can take virtual tours and
feel as if they are actually touring the area without having to

travel. A significant social impact in making virtual reality
more immersive is virtual reality can be used in first
responder training. “One of the study's findings was that
Soldiers lack access to realistic TC3 simulation that could
improve the individual and collective skills Soldiers and
squads need to manage the complex environment of
simultaneous combat and casualty management,” says Mike
Casey from the Combined Arms Center US ARMY [3].

The system specifications are shown in Table 1.

Table 1. System Specifications.

Specification Value
End-to-End Latency [4] < 200 milliseconds

Frame rate [5] 60 frames per second

Speed Accuracy 0.5 MPH±

Depth Accuracy < 1 inch st. deviation
Reset Button Reset at any time

The above specification for speed accuracy was chosen
because ±0.5 MPH is sufficiently accurate to gather useful
information such as average speed or distance traveled in a
given session rounded to the nearest whole number. Depth
accuracy was chosen as a requirement regarding the hand
and arm movement because the user is going to be reaching
forward while using this system and the difficulty of depth
measurements [6] indicates the need for accuracy of
movement in the plane parallel to the face of the camera. A
one-inch standard deviation was deemed adequate to
accurately reflect depth. Based on the findings in reference
[4], it was determined that end-to-end system latency
needed to be less than 200ms in order to make the virtual
environment appear smooth. 60 frames per second was
chosen, as reference [5] makes it clear that virtual reality
games that run below 60fps can result in users becoming
motion sick. A reset button is also listed as a specification
to allow the user to reset the system at any desired time.

2
SENIOR DESIGN PROJECT 2017, TEAM 16, MDR

II. DESIGN

A. Overview

Fig. 1. System Block Diagram

This project has four distinct parts, as the block diagram in
Figure 1 illustrates. The first block is the user motion
subsystem. This consists of a compact elliptical, a sensing
board, and a Raspberry Pi. The purpose of this block is to
allow the user to roam freely and determine their speed so it
can be used in the virtual environment. The second block
tracks the hand and arm movement using a Kinect sensor
and sends the coordinates of the hands to the virtual
environment. This coordinate data gives the hands a useable
virtual interpretation. The third block is the wireless
network which takes the data input from block one and
block two, and sends it to the virtual environment running
on the smartphone. The Raspberry Pi has a server that
handles the user motion data, and a PC has a server to
interface the Kinect. These are sent on a private router to
the smartphone. The smartphone parses through the data it
received and uses it as user controls in the virtual
environment. The 3-dimensional environment runs on the
the smartphone, which is inserted into a headset for the user
to wear.

B. User Motion

The User Motion subsystem must calculate the user’s
speed in MPH as a function of the rotational speed of the
elliptical. This is accomplished by placing a series of
magnets on the wheel of the elliptical and detecting how
often they pass by.

The system uses four magnets mounted at 90 increments °
on the wheel while a Melexis US5881 Hall Effect sensor
[7] is used to detect the presence of a magnet. Every step on
the elliptical corresponds to roughly six rotations of the
wheel, meaning that the sensor detects a magnet about 24
times per step. This results in the user’s speed being
updated every 42 ms which is fast enough to accurately

reflect the user’s real world movement in the VR game, and
fulfills the desired specification of having speed accurate to
within 0.5 MPH.±

The hall effect sensor is connected to a Raspberry Pi
which runs a Python program that calculates the speed in
MPH based on the frequency that magnets pass by. The
Raspberry Pi additionally runs a secondary Python program
that connects to the smartphone, on which the VR game is
running. This program sends the current speed of the user
upon request to the game. The phone then uses this data to
move the user in the VR game.

The connection to the smartphone is established via TCP
over WiFi. The average latency of the connection was
found to be 70ms across 100 TCP packets sent between the
Raspberry Pi and the Smartphone.

The movement speed is calculated using the following

expression:

 PH M = 5280 feet/mile

RPM Diameter (feet) π 60 seconds* * * * 1
24

A sample of calculated speeds was gathered by modifying

the Python program to output the current speed every
second. These calculated speeds were then compared
against the speed displayed by the elliptical’s built-in
computer. The speed displayed by the elliptical is being
used as the reference speed for this comparison. The
calculated speed is accurate .5 MPH as shown in the ±
visualization below. Standard deviation was calculated as
0.152 MPH.

Fig. 2. Variation in speed calculated by the User Motion Subsystem at
differing speeds.

C. Hand & Arm Movement
The Hand & Arm Movement subsystem has two primary

requirements; it must be accurate and time efficient. The
Microsoft Kinect 360 is used for this [8]. It can interface
with a PC and is programmable in C#. The Kinect is often

3
SENIOR DESIGN PROJECT 2017, TEAM 16, MDR

criticized for its poor depth performance [9], so the set
specification is a depth accuracy to within a 1 inch standard
deviation. If the depth performance is sufficient, then the
accuracy of the device is sufficient.

The steps to using and interfacing the Kinect are to first
create the server on the PC and then extract the position of
the body parts being tracked. The server then waits for a
request from the game to send data, and when received,
writes the position data as a string onto the server. The
game then reads and parses this data and uses it in the
virtual world.
The internal processing of the Kinect includes a “skeleton”

model of the user. Many of the body parts are recognized
and considered a “Joint type” object with certain attributes,
one of which is position. Examples of these joints are the
hands, elbows, shoulders, hips, and head. Figure 3 shows a
typical example of the skeleton generated. The green circles
indicate the joints that are considered “Joint type” objects
and are connected with a “bone” which is just a segment
connecting two joints.

Fig. 3. Skeleton model of a person generated by the Kinect.

Each of these joints include an attribute in (x,y,z)
coordinates that describe the position of each joint in
reference to the front of the Kinect. The x-coordinate
indicates the horizontal displacement of a joint from the
perspective of the Kinect. The y-coordinate indicates the
vertical component, and the z-coordinate indicates the
depth. All three of these are measured in meters. The
z-coordinate, the depth, is used to measure the accuracy of
the Kinect. To test the accuracy, two different depth
measurements were marked off by hanging wire from the
ceiling. The two wires were measured and strung at 1 meter
and 2.25 meters away from the front of the Kinect. The

computer printed out the coordinates of the right hand as
the person in front of the Kinect reached forward for the
wire at 1 meter and backward for the wire at 2.25 meters.
The tester then recorded the z-coordinates into excel and
compared the values to the measured distance. One hundred
measurements were taken for each wire and the results are
summarized in Table 2. Bearing in mind that the
requirement is to keep the depth performance within a
1-inch standard deviation, the results in Table 2 indicate
that the accuracy of the Kinect is sufficient for the purpose
of this project.

Table 2. Results from Kinect depth performance experiment.

With sufficiently accurate data, the second requirement is
that the processing must occur seemingly in real-time.
Standard video is typically shot at 30fps, and this appears
smooth to the average eye. The Kinect processes the
skeleton data at this same rate [10], but commonly, virtual
reality is run at a much higher frame rate. Although 30fps
may be satisfactory, it would become a bottleneck if the
game needs to wait for new data to redraw the frame.

In this situation, the frame rate would be capped at 30fps.
There are two possible ways to avoid this issue. The simpler
way is to use stale data if the frame rate is running high
enough above the 30fps data rate. Essentially, this method
would draw multiple frames using the same position data.
Focusing on the hands, if the final frame rate is not high
enough, then the movement of the hands would appear to
lag. As an example, assume that the frame is drawn twice
for every request to the Kinect. If the final frame rate is at
36fps (higher than the 30fps bound caused by the Kinect),
the Kinect data is only updating at 18fps, which is slow
enough to appear lagged. This is the easiest solution to
employ, but it can lead to issues of lagging hand and arm
movements.

The second solution is to employ a predictive approach to
the joint position. The most basic approach is to linearly
extrapolate the position for some future time and then write
this data to the server. An example of the linear model
would require two Kinect-processed data points, if the
current point is the point calculated at time t , then the model
would also use the position of the joint at time t-1 . First,
note that because the Kinect runs at 30fps, or 30 Hz, that
time t and t-1 occur 1/30 seconds apart (~33.33 ms). This
model should extrapolate the data between time t and time

4
SENIOR DESIGN PROJECT 2017, TEAM 16, MDR

t+1 , or half of the time between one cycle of the Kinect.
The x, y, and z coordinates can be linearized between these
two times, so the difference x(t) - x(t-1) (𝚫x) indicates the
change along the x-axis over the time difference. The
position one-half of a cycle later could then be estimated to
be one-half of the difference [(𝚫x)/2] in the same direction
of the change. This approach would allow for the game to
call to the Kinect once and pull two coordinates for the
particular joint.

Implementing the Kinect has worked thus far, but a future
issue may be “self-occlusion” which is the blocking of a
joint of interest by the rest of the body. An example of this
would be reaching behind your back or standing at an angle
to the Kinect. The Kinect needs to be facing the front of the
user to work accurately. If the user remains fixed, then this
should be of no concern, but if the user would ever pivot,
then the Kinect would have to follow. An avenue for next
semester is rotating the person and elliptical when the user
indicates that they wish to turn. The world would turn, but
they would also physically pivot. This is a large mechanical
project, but the control to determine if the user wishes to
turn may be possible by using the Kinect to track the hip
joints. Canceling out the hip displacement due to walking in
one dimension, the amount of the rotation of the hips would
indicate how much the user turns, both in the game and in
real life. This turning capability of the project requires
extensive fine-tuning, but may be possible without
additional sensing hardware.

D. Network

The wireless network required for our system allows
reliable communication between all the input and output
components of the system. The I/O components consist of
the PC, Raspberry Pi, and the Android phone; they all
communicate via WiFi through a router. TCP/IP protocols
were established in order to make sure that the
communications between the devices were stable. This was
done by creating TCP servers and clients. The PC and the
Raspberry Pi were established as the servers and the
Android phone was established as the client.

A local network using the router was established in order
to allow communication between the devices. Attempting to
use a pre-existing network that the school provided was
inadequate. When clients try to access other servers through
the secured network provided by a third party source, in our
case by the university, there was no problem, but when a
server was established for the system, the secure network
would not allow other clients to access the server. The
solution was to establish an independent WLAN, or

wireless local area network. In doing so, there was freedom
with how the TCP servers and clients were created.

The network must be able to provide quick transmission
of data through the wireless interface. WiFi and Bluetooth
were the two clear solutions. The reason that transmission
via WiFi was chosen for the system over Bluetooth is WiFi
has lower latency and higher data throughput. To see this,
observe the table below.

Table 3. Comparison of WiFi and Bluetooth

 Bluetooth 4.0
[11]

WiFi (802.11n)
[12]

Frequency 2.4GHz 2.4/5GHz

Latency ~100ms 1-10ms

Data Rate 25Mbps 600Mbps

Since the overall system quality will be highly dependant

on the efficiency of data transactions, minimizing the
latency through the interfaces is key; therefore, choosing
WiFi over Bluetooth is the better choice since the typical
maximum latency of a 5GHz WiFi network is an order of
magnitude less than the average latency of Bluetooth.

Once the system was completed and the phone (TCP
client) could successfully retrieve data from the PC and the
Raspberry Pi (TCP servers), measurements were taken to
observe the end-to-end latency of the system. The measured
latency from the data of two inputs, the kinect and the
elliptical, which are processed by the PC and Raspberry Pi
respectively, to the Android phone game is around 163ms.
This latency is satisfactory in maintaining a realistic feel
and control of the virtual world.

This latency was calculated by taking a slow motion
video, at 240fps, of the phone screen and the user in the
same frame and manually counting how many frames it
took for the phone screen to mimic the user’s body
movements. The video was extracted into individual frames
by using MatLab and then the frames were manually
counted. The average frame count was around 39 frames,
therefore end-to-end latency = 39 frames * 1/240 seconds
per frame = 163ms. This is significant because reference [3]
indicates that 166ms is approximately where gamers would
notice controller lag, and a goal of this project is to appear
real-time (i.e. no lag).

5
SENIOR DESIGN PROJECT 2017, TEAM 16, MDR

E. Smartphone Application and Headset
The smartphone application serves as the user’s means

of vision into the virtual world. This is accomplished by
placing the phone inside of a virtual reality headset, inside
which the phone screen is oriented towards the user’s eyes,
effectively turning the phone screen into the user’s full
range of vision.

The phone application is required to be able to generate a
3D virtual world, receive and process data sent from the PC
and Raspberry Pi, and maintain a frame rate of 60fps. This
is accomplished through use of the Google VR Standard
Development Kit (SDK) [13] for the Unity game engine.
The Unity game engine [14] is used to build a 3D
environment that can be exported into a phone application.
The Google VR SDK, when imported into Unity, allows for
the creation of a VR environment by splitting the screen
into two sections for each eye in the headset (Fig. 4) and
utilizing the phone’s accelerometer to orient the image in
the direction that the user is facing.

Within the Unity game engine, supported by the Google
VR SDK, a virtual world is generated in which objects,
textures, and sounds can be imported and manipulated with
scripting. For the purpose of making a game to demonstrate
the system functionality, an environment was created to
simulate the user being in a valley with grass and trees (Fig
4).

Fig 4. Phone screen with application launched

Within this environment, objects can be imported and
manipulated by use of C# scripting. This includes the
camera object, which is essentially the portal in which the
user sees into the environment (as seen in Figure 4), a
multitude of graphical objects, textual objects, light objects,
etc.

To establish a connection between the application and
the PC and Raspberry Pi, a TCP client script is started when
the application is launched. The TCP client sends a request
to connect to the Raspberry Pi and PC servers, and once the

request is accepted, a data stream is opened for each device.
The client script then requests data from each device
through each stream. This request is sent on every frame
render, to ensure that the data coming from each device is
synced with the data available in the application. The client
is essentially sending a signal to the servers to indicate
when it is ready for new data (each frame render), and the
server is sending the data if and only if the client requests it.
This avoids any issue with data being sent faster than the
speed at which the application can use it.

This byte data is then parsed into usable variables that
can be applied in scripts attached to game objects. From the
elliptical (Raspberry Pi), a speed variable is used to vary the
speed at which the user moves through the environment.
This variable is used in a script attached to the camera
object, thereby moving the camera at the same speed that
the user is moving. This provides the appearance of moving
in the game at the same speed that the user is moving on the
elliptical. From the Kinect (PC), three coordinate variables
are used for each hand to vary the x, y, and z coordinates of
the left and right hands in the virtual world. A relative
coordinate system is established within the Unity
environment to vary the user’s virtual hands based on the
coordinates received from the Kinect.

The end result is a game that can be launched as a
smartphone application, in which the user can stand on the
elliptical and move forward in the virtual world at the speed
which they are moving on the elliptical, all while using their
hands to pop balloons. The game keeps score of how many
balloons the user has popped, as a user incentive.

It is important that the frame rate of the application is
maintained as close to 60fps as possible [5]. The goal was
set at 60fps because 60fps is the maximum possible frame
rate on an Android LCD screen, which has a refresh rate of
60 Hz. Limited by vertical synchronization (VSYNC), the
smartphone’s hardware will not allow an application to
render frames faster than the phone screen can refresh. Even
if possible to turn off VSYNC, it is not advisable to do so,
because screen tearing may result [15]. Meeting this
requirement was first approached by ensuring that both
servers were able to send data at a minimum rate of 60 Hz.
This was an issue only with the Kinect, which was
addressed in Section C. To verify that the frame rate can
reach 60 fps, the application was simulated within the Unity
program. Frame rate was noted to drop when a large
number of animated objects were present on the screen.
This result must be taken into consideration in all future
game development that utilizes this system. Another
consideration is the smartphone which the application is

6
SENIOR DESIGN PROJECT 2017, TEAM 16, MDR

being run on. If the phone has a low clock speed on the
central and graphics processing units, then frame rate may
drop as well. In trials through the Unity program, 60fps was
consistently achieved with the demonstration game.

III. PROJECT MANAGEMENT

Table 4. MDR Goals

MDR Goals Status

Precise Speed Control Complete

Kinect Motion Sensing Complete

Data Processing and
Transmission to
Smartphone

Complete

VR Environment with
Inputs

Complete

The team members of this project are working well

together. Communication and morale levels are high
amongst all members. The team has two meetings per week,
one with Professor Goeckel and one without. The interfaces
between the blocks and analysis of data involved significant
team collaboration. Solutions to difficult parts of the
individual blocks were also considered as a team. Efforts
are divided evenly and each team member has been
successful in reaching their goals.

The speed control has been accurately measured, using
the on-board elliptical speedometer as the ground truth. The
Kinect motion sensing can accurately track the position of
the hands and other joints, and the position is extracted and
used in the game. The data processing and transmission to
the smartphone is composed of two working servers and a
client, that communicate through the wireless interface
following TCP/IP. The 360 degree virtual environment
programmed onto the phone can accept and use the input
data.

Jared Ricci’s expertise lies in the elliptical and Raspberry
Pi system (Section II, B). Joe Roberts’s expertise lies in the
Kinect sensor and PC system (Section II, C). Steven So’s
expertise lies in the system networking between devices
(Section II, D). Ryan Daly’s expertise lies in the
smartphone application game development (Section II, E).

Fig. 5. Step Gantt Chart

IV. CONCLUSION
At this point in the project, all that has been set out to

deliver by MDR was accomplished. The user is able to play
a virtual reality game in which they can control their speed
via elliptical and have their movements reflected in the
virtual world. At this point, the user is able to only move
forward and in one direction.

A future goal is to be able to move backwards, and turn
in any desired direction, potentially having the elliptical
physically turn as the user turns. This is perceived as being
the most difficult goal, as the turn detection is expected to
be a challenge. Another goal is to have a variable fan in
front of the user, so the user may experience the movement
of air as they naturally would if moving forward. This will
all be accomplished with the already established structures
and interfaces that have been created.

ACKNOWLEDGMENTS
Professor Dennis Goeckel, Project Adviser
Professor Weibo Gong, Evaluator
Professor Sandip Kundu, Evaluator
Fran Caron, Lab Manager
Professor Christopher Hollot, SDP Professor

REFERENCES
[1] “Google Daydream”, Google, 2016. [Online]. Available:

https://vr.google.com/daydream/. [Accessed: 03-Dec-2016]
[2] Begay, Dion. “What Can Obesity Lead To?” Obesity in the Latino

Population. N.p., Spring 2005. Web. 13 Oct. 2016.
[3] Casey, Mike. January 25, 2016. "Improving Tactical Combat

Casualty Care to save Soldiers' Lives."Www.army.mil. N.p., 25 Jan.
2016. Web. 13 Oct. 2016.

[4] R. Leadbetter, Eurogamer.net , 2016. [Online]. Available: "Console
Gaming: The Lag Factor", Eurogamer.net, 2016. [Online]. Available:
http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article.
[Accessed: 01- Dec- 2016].

[5] C. Hall, "Sony to devs: If you drop below 60 fps in VR we will not

7
SENIOR DESIGN PROJECT 2017, TEAM 16, MDR

certify your game", Polygon , 2016. [Online]. Available:
http://www.polygon.com/2016/3/17/11256142/sony-framerate-60fps-
vr-certification. [Accessed: 13- Oct- 2016].

[6] B. Langmann, K. Hartmann and O. Loffeld, "DEPTH CAMERA
TECHNOLOGY COMPARISON AND PERFORMANCE
EVALUATION", University of Siegen, Siegen, Germany, 2012.

[7] Melexis, “Unipolar Hall Switch - Low Sensitivity,” US5881
datasheet, Mar. 2012

[8] "Kinect for Windows Sensor Components and Specifications",
Msdn.microsoft.com , 2017. [Online]. Available:
https://msdn.microsoft.com/en-us/library/jj131033.aspx. [Accessed:
01- Feb-2017].

[9] D. Pagliari and L. Pinto, "Calibration of Kinect for Xbox One and
Comparison between the Two Generations of Microsoft Sensors",
Sensors , vol. 15, no. 11, p. 27571, 2015.

[10] "Kinect for Windows Sensor Components and Specifications",
Msdn.microsoft.com , 2016. [Online]. Available:
https://msdn.microsoft.com/en-us/library/jj131033.aspx. [Accessed:
30- Nov-2016].

[11] Bluetooth Core Specification, Bluetooth 4.0, 2010.
[12] IEEE Criteria for 802.11n WiFi, IEEE 802.11n, 2009.
[13] "Google VR SDK for Unity," in developers.google.com , 2016.

[Online]. Available: https://developers.google.com/vr/unity/.
[14] "Unity Scripting API," in unity3d.com , 2017. [Online]. Available:

https://docs.unity3d.com/ScriptReference/.
[15] "Adaptive VSync | Technology | GeForce", Geforce.com , 2016.

[Online]. Available:
http://www.geforce.com/hardware/technology/adaptive-vsync/techno
logy. [Accessed: 05- Nov- 2016].

