Pegasus-21 Midyear Design Review

Senior Design Project Fall 2016

Our Team

Istvan KreiszKeith MillerTrevor BerryEECSEEE

Zlatan Aksamija Advisor Our Mission

We aim to create a turret-mounted system capable of transmitting audio in a directed beam that tracks the listener.

Acoustic Directionality

-Directionality of sound correlates with the size of speaker compared to wavelength. The formula for far field directivity of a flat circular piston in an infinite baffle is

$$p(heta) = rac{p_0 J_1(k_a \sin heta)}{k_a \sin heta} \qquad ext{where...}$$

$$k_a=rac{2\pi a}{\lambda}$$

 $p_0 = \text{ pressure on axis}$

a = piston radius

 $J_1 = Bessel Function$

 θ = Angle off axis

-Piezoelectric transducers approximate the ideal acoustic piston

-Directionality is achieved by maximizing the piston radius and minimizing the wavelength

("Loudspeaker" n.d.)

Sound From Ultrasound

Technology to create directional, highly focused soundbeams:

-An array of transducers emits ultrasonic carrier waves in the direction of target

-Air, as a nonlinear medium, acts as a demodulator (no need for receiver)

-When the modulated wave reaches a person the modulated sound becomes audible

(Nema, "Ultrasonic Directive Speaker")

Sound From Ultrasound

http://www.soundlazer.com/what-is-a-parametric-speaker/

MDR Deliverables

Demonstrate the functionality of the individual stages

- Range of motion in X and Y direction for Turret
- Directionality of piezo-array speaker
- Face detection and recognition

System Block Diagram

Pegasus Turret: Block Diagram

Arduino

- Communicates with NVIDIA TEGRA TK1 over I2C
- Receives new position data from NVIDIA
- New data arrives every time an image is processed on the NVIDIA
- Turns the servos, controlling the turret to the desired position
- Upon request, sends back turret position to NVIDIA

Hardware: Minor Components

Servo Motors

- Input Voltage: 6V
- Operating Speed:
 - 0.15sec/60deg
- Stall Torque: 3.95 kg-cm

<u>Webcam</u>

- 3.0 Megapixel
- 1280 x 720 pixels
- RightLight Technology

Arduino Nano

- Input Voltage: 7-12V
- Logic Level: 5V
- Clock Speed: 16MHz
- PWM Capable

Soundlazer

- 12VDC power input
- 120dB ultrasonic output
- Usable range indoors: 30.0 feet
- Beam size of around 3 feet
- 40 GHz Carrier Wave
- Pulse Width Modulation
- Digital Signal Processing
- 5 Watt Carrier Wave

NVIDIA Jetson TK1

- GPU: NVIDIA Kepler GK20a with 192 CUDA cores (326 GFLOP)
- CPU: Quad-Core Cortex-A15 32-bit ARM Processor
- DRAM: 2 GB DDR3
- Storage: 16GB fast eMMC 4.

NVIDIA Jetson TX1

- GPU: NVIDIA Maxwell GPU with 256 CUDA cores (1 TFLOP)
- CPU: Quad-Core Cortex-A57 64-bit ARM Processor
- DRAM: 4 GB DDR4
- Storage: 16GB fast eMMC 4.51
- Wi-Fi

iphone App: Block Diagram

iPhone App System Requirements

Images

• 720p image standard

Frameworks

- RealmSwift
- .tar.gz compression
- sockets
- notifications

Targeting

- Override turret position
- Videofeed with aiming reticule

Server: Block Diagram

Server System Specifications

Database

 SQLite will suffice for prototyping purposes

Neural Net Training

- Train 2-person neural net in under 5 minutes for demos
- Send push notification

Tracking

<u>CAMShift + Kalman Filter</u>

- Currently utilizing a CAMShift algorithm for face tracking
- Next step to integrate Kalman Filter as described in *Improved CAMshift Algorithm Based on Kalman Filter*

("Advanced Science and Technology Letters.")

System Performance Test

18017 fund	ction calls	(17888	primitive	calls)	in	6.485	seconds
------------	-------------	--------	-----------	--------	----	-------	---------

Ordered by: standard name

ncalls	tottime	percall	cumtime	percall	filename:lineno(function)
15	0.774	0.052	0.774	0.052	:0(CascadeClassifier)
2	0.000	0.000	0.000	0.000	:0(POINTER)
1	0.089	0.089	0.089	0.089	:0(VideoCapture)
2	0.000	0.000	0.000	0.000	:0(WEXITSTATUS)
2	0.000	0.000	0.000	0.000	:0(WIFEXITED)
2	0.000	0.000	0.000	0.000	:0(WIFSIGNALED)
8	0.000	0.000	0.000	0.000	:0(contains)
274	0.002	0.000	0.002	0.000	:0(import)
17	0.001	0.000	0.001	0.000	:0(new)
20	0.000	0.000	0.000	0.000	:0(subclasses)
20	0.000	0.000	0.000	0.000	:0(subclasshook)
82	0.000	0.000	0.000	0.000	:0(_getframe)
67	0.000	0.000	0.000	0.000	:0(acquire)
117	0.000	0.000	0.000	0.000	:0(add)
271	0.001	0.000	0.001	0.000	:0(add_docstring)
8	0.000	0.000	0.000	0.000	:0(all)
6	0.000	0.000	0.000	0.000	:0(allocate_lock)
3	0.000	0.000	0.000	0.000	:0(any)
1481	0.005	0.000	0.005	0.000	:0(append)
43	0.000	0.000	0.000	0.000	:0(array)
18	0.000	0.000	0.000	0.000	:0(calcsize)
1024	0.003	0.000	0.003	0.000	:0(chr)
2	0.000	0.000	0.000	0.000	:0(clear)
10	0.000	0.000	0.000	0.000	:0(close)
14	0.000	0.000	0.000	0.000	:0(compile)
3	0.000	0.000	0.000	0.000	:0(compress)
1	0.000	0.000	0.000	0.000	:0(count)
15	0.024	0.002	0.024	0.002	:0(cvtColor)
1 5	1 222	0 202	1 222	0 202	· 0 (data a thirt 1 + 2 C 1 -)

22341 function calls (22147 primitive calls) in 11.580 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 15 0.854 0.057 :0(CascadeClassifier) 0.057 0.854 2 0.000 :0(POINTER) 0.000 0.000 0.000 0.083 0.083 :0(VideoCapture) 1 0.083 0.083 28 0.000 0.000 0.000 0.000 :0(WEXITSTATUS) 0.000 :0(WIFEXITED) 28 0.000 0.000 0.000 0.000 :0(WIFSIGNALED) 28 0.000 0.000 0.000 8 0.000 0.000 0.000 0.000 :0(__contains__) 0.000 :0(__import__) 274 0.002 0.000 0.002 0.000 :0(__new__) 17 0.001 0.000 0.001 0.000 :0(__subclasses__) 20 0.000 0.000 0.000 0.000 :0(__subclasshook__) 20 0.000 0.000 0.000 0.000 :0(_getframe) 82 0.000 0.000 0.000 67 0.000 0.000 0.000 0.000 :0(acquire) 117 0.000 0.000 0.000 0.000 :0(add) 271 0.001 0.000 0.001 0.000 :0(add_docstring) 0.000 8 0.000 0.000 0.000 :0(all) 0.000 :0(allocate_lock) 6 0.000 0.000 0.000 0.000 :0(any) 42 0.000 0.000 0.001 0.006 0.000 0.006 0.000 :0(append) 1577 108 0.000 0.000 0.000 0.000 :0(array) 18 0.000 0.000 0.000 0.000 :0(calcsize) 0.003 1024 0.000 0.003 0.000 :0(chr) 2 0.000 0.000 0.000 0.000 :0(clear) 0.002 0.000 0.000 :0(close) 140 0.002 14 0.000 0.000 0.000 0.000 :0(compile) 42 0.001 0.000 0.001 0.000 :0(compress) 14 0.000

0.000

0.002

0.352

15

15

0.025

5.277

0.000

0.025

5.277

0.000 :0(count)

0.002 :0(cvtColor)

0.352 :0(detectMultiScale)

Looking Forward

- 3D Print an acoustic horn Array to increase speaker directionality
- 3D Print turret chassis and casing
- Implement algorithms on NVIDIA TX1
- Build App
- Full Integration of subsystems

http://www.thingiverse.com/thing:45649/apps/#apps

CDR Deliverables

Keith:

• Fully working software pipeline for tracking, interfaced with the turret

Trevor:

- Design and 3D print acoustic horn and turret chassis
- Design universal power supply

<u>Istvan:</u>

- Build iPhone application skeleton
- PCB for power supply

References

"Advanced Science and Technology Letters." *Improved CAMshift Algorithm Based on Kalman Filter* (2016): n. pag. Web. Cam-Shift Info

Haberkern, Richard. "What Is a Parametric Speaker? - Soundlazer." *Soundlazer*. N.p., n.d. Web. 06 Dec. 2016. Soundlazer abstract

Haberkern, Richard. "#SL-01 Open Source Parametric Speaker - Soundlazer." *Soundlazer*. N.p., n.d. Web. 06 Dec. 2016. #SL-01 Technical Specifications

"Loudspeaker Facts - Directivity as a Design Issue." *Loudspeaker Facts - Directivity as a Design Issue*. Mc Squared System Design Group, Inc, n.d. Web. 07 Dec. 2016. Principles of speaker directionality

References (cont.)

"Loudspeaker." *Wikipedia*. Wikimedia Foundation, n.d. Web. 07 Dec. 2016. Equations of directionality and acoustic impedance

Nema, Nakul. "Ultrasonic Directive Speaker." *Scribd*. Scribd, 14 Apr. 2012. Web. 06 Dec. 2016. Detailed article explaining the science and technology behind ultrasonic directional speakers

"PRODUCTS." Audio Spotlight Directional Sound Speaker Technology - Holosonics. N.p., n.d. Web. 04 Dec. 2016.

Openface Issues, Github.com, https://github.com/cmusatyalab/openface/issues/157

Questions

Backup Slides

Mathematics of Secondary Waves

$$\nabla^2 p_s - \frac{1}{c_o^2} \frac{\partial^2 p_s}{\partial t^2} = -\rho \frac{\partial q}{\partial t}$$
 ρ : density of fluid, T_{ij} : stress tensor,

 p_s is the secondary wave sound pressure, p_1 is the primary wave sound pressure, β is the nonlinear fluid parameter, and c_0 is the small signal sound velocity.

The solution for Eq. (2.2) may be expressed by the superposition integral of the Green's function and the virtual second source [right side of Eq. (2.2)] as shown in Eq. (2.4).

$$p_s = \frac{\rho}{4\pi} \iiint_v \frac{1}{|r-r'|} \frac{\partial}{\partial t} q(rt - \frac{|r-r'|}{c_0}) dr'$$

Where r is the observation point position vector, r' is the source position vector and v is the nonlinear interaction space.

Ultrasonic Directional Speaker Circuit

MDR Deliverables

Sound Spear:

 Functioning amplifier and signal generator prototype capable of driving an ultrasonic waveform through a piezoelectric transducer

Pegasus Turret:

 Functioning turret with transducer array mounted

iPhone App:

- Version b.1.0
- Successfully sends pictures and preferences to the server

Server Cluster:

- Trains the neural net
- Protocols created to communicate with the app and turret

Compacted System Overview

How can it be done?

Pegasus-21