
Team 13 Castle Quest

1

Abstract — Castle Quest is a new take on a classic board game

that utilizes electronics, software, and physical game pieces to
bring players together as they venture and progress through a
fantasy world. The game facilitates up to four players that will be
competing against each other in pursuit of three keys scattered
around the board. Each player has their own set of keys to find,
hidden away in the various terrains and dungeons on the map,
which will provide obstacles and conflict for the players to face. A
Raspberry Pi will facilitate the game through various inputs and
outputs, which include a touchscreen, multicolored LEDs, and
speakers. The interactions between the player and the interface
will be coded to provide an immersive setting and determine the
occurrences and outcomes of encounters. Once a player has
acquired all three of their keys, they must venture to the tower and
defeat its three levels of combat. The first player to make it to the
top of the castle wins the game.

I. INTRODUCTION
INCE the introduction of online multiplayer
videogames in the early-mid 1990’s, we have

seen a decline in group-centric activities. Coupled
with changing societal norms on the constraints
placed on our youth, we see more and more
interaction happening in a detached, online setting
[1]. Along with the new form of interaction, we have
seen the accompanying problems that go along with
it like cyber bullying or impaired social development
leading to awkwardness in face-to-face interaction.
Our proposed solution to this problem is to bring
people together in an enjoyable and interactive way
via playing a board game. This will allow players to
develop interpersonal skills, improve conflict
resolution and learn how to be a good winner/loser.
We plan to modify a board game called Dark Tower
by Milton Bradley Company [6] with new electronic
components and gameplay, which we will call Castle
Quest.

Our approach to educating the general populace to
an issue through playing games is not a unique one.
In the past, people have used board games to gather
individuals together and help them learn through the

D. Lassalle from Upton, MA (e-mail: dlassalle@umass.edu).
E. Wybenga from Andover, MA (e-mail: ewybenga@umass.edu).

experience of playing together. The game Monopoly,
or as it was originally named The Landlord’s Game
[2], was first patented in 1904 by Elizabeth Magie
who originally intended it to “illustrate the economic
consequences of Ricardo’s Law of Economic rent
and the Georgist concepts of economic privilege and
land value taxation” [3]. Today though, our focus is
to teach more fundamental techniques for interacting
with one another; how to interact in a competitive
environment, how to balance short term vs long term
gain, and most importantly how to lose gracefully. In
order to win Castle Quest, players must face off
against each other, competing to acquire the armor,
weapons, and keys to defeat the levels of the castle
and win the game. They will need to determine
whether to spend gold enhancing themselves or
hindering their opponents as well as the route they
will take on their journey. Individuals will learn to
have fun while battling with friends, developing
conflict resolution when the game gets tense.

Table I
Specifications

Specification Value
Weight
Battery Life
Height
Width (Board Diameter)
Age Rating

<10 lbs
>10 hours
<16 in
<36 in
10+, not for children
under 3 years

 Table I shows the physical specifications of the
castle and game board. Our design is proposed with
the individual consumer in mind, keeping the board
game light enough and compact enough to transport
and having a battery life that lasts through several
gameplays. Additional specifications include age
rating due to the fantasy violence component of the
game and the potentially dangerous nature of

D. Dereli from East Brunswick, NJ (e-mail: ddereli@umass.edu).
S. Mangels from Amherst, MA (e-mail: smangels@umass.edu).

Castle Quest
David Lassalle, CSE, Eric Wybenga, CSE, Devrim Dereli, EE, and Sarah Mangels, CSE

S

Team 13 Castle Quest

2

electronics in general.
 The remaining paper will be composed as follows;
in section II the design of the game is presented, first
as an overview of general background and gameplay
and followed by a more detailed description of the
individual blocks in the block diagram shown in Fig.
B. Section III details how the project management for
the construction of the game will go and what the
current status of our project is. Section IV concludes
the paper and lists our upcoming goals from now
until the Comprehensive Design Review (CDR) and
beyond.

II. DESIGN

A. Overview
Our solution to this problem is to reinvent an

electronic board game from the early 80’s called
Dark Tower. Dark tower was designed by Milton
Bradley in Springfield, MA and consisted of a central
tower that acted as a random event generator at each
space of the game. As the player moved around the
board, the tower would introduce monsters and
enemies to fight with and keep track of the player’s
strength and game progression. Our interpretation is
called Castle Quest and focuses on a central
electronic castle in the center of the game board. The
castle houses a battery pack, a Raspberry Pi, a touch
screen, and our PCB. Outside of the castle, LEDs
indicate which space on the board the player is in.

In a standard round, the tower will be manually
rotated to one of the four players who will use the
touch screen to play interact with the game and move
to a new space. The LED of their chosen color will
then turn off and the LED at the new location will
turn on, indicating a move. Once a move is complete,
the tower will be rotated the next player process
repeats until a player finishes the game. At any point,
the game state can be saved onto a USB and plugged
into another Castle Quest game set to be continued.

Figure A: Original Dark Tower Game

We expect this project to solve the problem we are

facing by providing a new sense of excitement
around tabletop games. With the electronics and
portability, we believe that Castle Quest will bridge
the gap between standard board games and video
games in a way that is draws in the consumers for
both.

Two alternatives came to mind as we discussed
how to bring people together around electronic
gameplay. One was the extremely popular app
Pokémon Go, which attracted tens of millions of
users in only a few weeks. The benefits of something
like this are that it is quick to spread and brings
people outside, but the fallbacks are that the users are
still focused on their phones and that the popularity
declined rapidly after the first month [4]. The second
alternative was a series of games made by Jackbox
Games which used the TV as a shared display for all
the players who interact with the game through the
internet using a smartphone or other internet-enabled
device. This set up brings people together in the same
room, but again has most people are focused on their
phones or the TV rather than each other.

Figure B: Castle Quest Block Diagram

Team 13 Castle Quest

3

Most of the components of our project reside in the
3D printed castle which will need to fit our
components while staying under our weight and size
requirements. The Raspberry Pi in the castle is the
computational powerhouse that will run all the code
in the system. The Data Management block
represents the the gameplay that will be run, while
the UI block represents the touch screen and audio
that the user will interact with. The state of game-
board will also be maintained by the Pi, which will
need to meet our requirement of fun and intuitive
gameplay for four players. The PCB allows all of this
to be possible by maintaining a steady flow of power
from the battery pack into the Raspberry Pi and game
board. Together these blocks create a portable, long-
lasting game for up to four players to enjoy.

B. Block 1: Castle
The castle from the original game was very

befitting to its title; a tall black tower perched on a
bed of rock, standing monolithically at the center of
the map. For our game, we decided to keep the
placement and motion of the castle the same, but
figured a different design would be more suitable for
our setting.

We started off by doing a few rough sketches to
come up with an overall structure of the tower,
whether it should be conical, pyramidal, cylindrical,

Figure C: 3D Castle Model

or rectangular. Once the structure was selected, a
more detailed and dimensioned blueprint was drawn
on graphing paper. The dimensions chosen were
based on the size of the internal and external

components that are to be placed on and within the
castle, as well as few aspects of gameplay. It had to
be wide enough to mount the touchscreen on the
front, have enough volume to house the pi,
connectors, PCB, and battery, provide a little bit of
cover on the sides so that players can’t see the screen
during another player’s turn, and still capture the
relative enormity it has to the board.

Once all of that was settled, the design was
modelled using a CAD software called Fusion 360,
made by Autodesk [10] shown in Figure C.
Currently, the tower is to be printed using the 3D
printer in Marcus 5, and will most likely go through
a few modifications as we continue along with the
building process.

C. Block 2: Data Management
The Data Management will consist of a Java

project running on the Raspberry Pi [5]. This code
will run the game and maintain game and player
state, including player inventory and stats. Data
Management will essentially be the software driver
for the game. The game will be developed in Java
using Eclipse [7]. The first step to developing the
game, which we have already completed, is to design
Java interfaces to specify what classes, methods and
input/outputs we will need. We have also designed a
finite state machine (FSM) to govern game play
which we will use to implement the game in code.
The FSM specifies the inputs, outputs and actions of
each player’s turn in the game and can be seen in
Figure D. The main method will act as the controller
of the game and will loop through each player’s turn
according to the FSM.

Figure D: Gameplay FSM

This block will use technical knowledge from our

Data Structures and Software Intensive Engineering

Team 13 Castle Quest

4

courses including programing and testing in java,
software development lifecycle and program data
structuring and storage.

In order to complete this block, we will need to
review graph data structures and learn how to
integrate a java project with the Raspberry Pi and
touch screen.

 We will test the Data Management block using
JUnit testing which is a unit testing framework for
Java [8]. This allows us to test common and edge
cases for each method and class in the java project
and to ensure that each sub-element of the code
system is working properly. Next, we will
functionally test the whole java project by
developing game play scenarios and hand calculating
the expected outputs for comparison. Finally, we will
test the whole Data Management portion of the
system when the entire project has been integrated
simply by playing the game and verifying the proper
executing using the FSM and gameplay rulebook we
have developed

D. Block 3: Game Board
The game board is what provides the players with

spatial awareness of what is happening in the game.
As such, our board must clearly display each player
distinctly in a way that they will be able to see at a
glance how they should progress through the board.

The physical board itself needs to be lightweight
enough to be feasibly transportable while being
strong enough to survive repeated transportation. The
board will be constructed from a layering of
cardboard, medium density fiberboard (MDF), and
waterproof glossy poster paper. The bottom layer
will be constructed from cardboard and the soft
flexible nature of the material will be used to inlay
the wires running from one addressable LED to the
next, representing the players as they move around
the board. This will protect the wires from being
brushed up against, potentially disconnecting a wire,
and will absorb some impact from a dropped board.
The middle layer is the MDF and provides structure
to the game board. MDF is a dense, sturdy, and
smooth material. Since it lacks a wood grain, it is
easily cut, allowing us to cut holes for each of the
LEDs to show through. The drawbacks to MDF are
that its density makes it a very heavy material which
we plan on overcoming by using a thinner sheet

(~1/8”) as well as its tendency to soak up water which
will be covered by an oil finish as well as the top
layer, the glossy poster paper. The poster paper will
protect the lower layers from spills on the board and
will provide a surface to design the graphical game
board. Holes will be cut in the poster to allow the
LEDs to shine through and the LED holes will be
waterproofed with hot glue, protecting the LEDs and
lower layers as well as diffusing the LED light. The
layers will be attached to one another via a glue
adhesive.

The player processing will occur in the CPU of the
Raspberry Pi and the information will be sent out to
the LEDs via the Pi’s I2C GPIO pins. Techniques for
hardware interface learned from ECE 353/354 -
Computer Systems Lab 1 and 2 will be employed to
interface to hardware as well as to write player
positions to external memory.

To test this block, shorter chains of addressable
LEDs will be strung together on a breadboard and the
LEDs will be tested to see that they can accurately be
selected to show a specific color. We then will test
the capability for multiple entities to coexist on one
point by alternating the color of the node between the
colors associated with all current residents of that
spot. Finally, the chain of LEDs will be expanded to
encompass all board spaces and will be attached to
the physical board.

By performing the above tests, we verify that the
chain of LEDs has no malfunctioning units and that
all edge cases are covered for the physical hardware
display.

E. Block 4: User Interface
In order to have a fun and intuitive game, the user

interface needs to provide a sleek and simple means
to interact with the game driver. The UI will be a
graphical user interface that receives and displays
data to and from the user via a touch screen and
speaker in the castle. It will be responsible for
displaying the status of the game for each player and
relay gameplay decisions to the data management
block to invoke game progression and game board
updates.

Team 13 Castle Quest

5

Figure E: Current UI Mock-ups

The Raspberry Pi has been configured with a

3.5mm headphone jack and vertically-oriented
resistive touch screen. During fight sequences, tower
rotation, and other game events, short audio clips will
be played through a speaker on the top of the castle
from the 3.5mm headphone jack. Meanwhile, the
Java Swing GUI will be displayed on the touch
screen for user interaction [9].

In CS 121 – Introduction to Problem Solving using
Java, we briefly learned about Java’s native GUI
capabilities and designed a rudimentary sliding text
screen from user input. Using Eclipse with the
WindowBuilder plug-in, we will learn more complex
operations that the Java client can provide and how
to create and display animations.

Once the GUI is complete, a transition though of
each UI screen will be done to ensure that the
interface works correctly. For a full test, the UI block
and data management block will need to be tested
together with a play-though of the game. Depending
on the results of the play-through, there will likely be
many tweaks that need to be made to ensure the UI
and data management communicate correctly.

F. Block 5: PCB
Initially we had decided to utilize the PCB for I/O

expansion due to the large number of LEDs that need
to be utilized by the board, but after receiving some
feedback and advice from our MDR evaluation, we
decided to redirect the purpose of the PCB towards
power management. A variable voltage regulator
will be built on the PCB in order to provide linear
power to the electronics.

A rather robust and simple design was found online
through the DIY site Instructables.com [2]. The
design implements an LM317 voltage regulator IC, a
1N4001 diode, and several linear circuit components.
The current design can source between 7 to 14V and
supply 1.6 to 6V, which is well within the range of

the operating voltage needed to power the pi.
Techniques learned in the project portion of ECE 324
– Electronics II, such as datasheet analysis,
implementation of basic circuit theory, and spatial
allocation for hardware will come in handy for
building and debugging.

Currently the circuit is being built on a bread board
and being tested for functionality. Once, it performs
to spec, the components will be soldered onto a
protoboard to see how the final PCB will fit and
function with the other components. The final step
will be to build a custom PCB for the circuit using a
CAD program. We plan on learning and using Eagle
CAD to make our final design.

III. PROJECT MANAGEMENT

Prototype Castle Model Complete
Prototype Game Board and UI Complete
Finalize Gameplay Complete
Code System Overview Complete
PCB Design – Breadboard Mock
Up

Incomplete

Figure F: Status of MDR Goals

So far, the full Castle Quest game has been
designed, including a layout of the game board, the
CAD model for the 3D printed castle, graphical
designs for the UI and a game play design which
includes a finite state machine, java interfaces and a
well defined main code outline. As a team we thought
that we met our MDR deliverables by the time of our
presentation however our evaluators felt our
deliverables were not well defined. Our evaluators
felt we should have made more progress by that time.
In the future we plan to define our goals and
deliverables more clearly and communicate with our
evaluators so everyone is on the same page. We now
need to finish implementing the java code, design
and print the PCB, execute the code for the LED’s
and UI, 3D print the castle and build the board. A
Gantt chart demonstrating the current progress and
future plan is included in Figure G.

Team 13 Castle Quest

6

Figure G: Gantt Chart

Each week our team meets for about an hour or two
on Wednesday evenings to discuss progress and
questions and to make sure we are on schedule. We
then meet with our advisor on Friday afternoons for
a half hour meeting to check in. We often use this
time with our advisor to practice presentations or
review progress on key goals. We work throughout
the week in the SDP lab both individually and as a
group. Each week, David sends an email with the
goals and task of the week broken down for each
team member and we plan to have those
accomplished by the Friday meeting with our
advisor. Less formal communication in our group is
done through a group Facebook chat and in person as
we spend a lot of time together. We have split the
responsibilities of the project down into individual
and smaller groups as follows.

Game implementation in Java - Sarah, David
PCB design, power management - Devrim
Game board design and implementation - Eric
LED layout and programming - Eric, Devrim
UI implementation in Java - David, Sarah
Castle design and 3D printing – David

We think these tasks fit well with each team

member's areas of interest and experience. Devrim,
being the sole Electrical Engineer of the group, has
taken on most of the hardware based project tasks.
Eric (CSE) has previous experience using Raspberry
Pi and a strong interest in the LED programming.
David (CSE) has experience using CAD software
and 3D printing for previous projects and is
interested in Java based UI design. Finally, Sarah
(CSE) has a strong background with Java
programming and is interested in working on the
integration of all components of the project.

Ultimately, as this is a team project, we are all
expecting and willing to help each other out.

Specifically, so far, David and Sarah have worked
closely on designing the Java interfaces to implement
the game in Java and Devrim and Eric have been
working together to design the use of the LED’s and
the game board. We anticipate a lot of collaboration
when we begin integrating the various components of
the project.

IV. CONCLUSION
As of now, Team 13 is slightly behind our

projections from the beginning of the project. We
met most of our MDR deliverables and have designs
for each subsystem of our block diagram, but our
MDR deliverables were too weak, meaning that there
is a larger portion of work to be done for the spring.
Our project work process consists of weekly
deliverables for each team member and we will
continue to do this throughout the spring semester.

Between now and CDR, we will be generating
code from our designs and finalizing each subsystem.
Once that is complete, our goal is to integrate most,
if not all, of the systems for our CDR evaluators to
review.

As for any project, we expect a significant amount
of debugging for the data management, board driver,
and UI codes as well as hardware debugging for the
PCB. One of the larger difficulties will be printing
the tower, due to a lack of organization around the
printer in M5.

Post-CDR, the main goal will be full integration for
all systems and aesthetic finalization of the castle and
game board.

REFERENCES
[1] Herring, Susan C. "Slouching toward the ordinary: Current trends in

computer-mediated communication." New media & society 6.1 (2004):
26-36.

[2] Pilon, Mary. "Monopoly’s Inventor: The Progressive Who Didn’t Pass
‘Go’." The New York Times. The New York Times, 14 Feb. 2015. Web.
18 Dec. 2016.

[3] Parlett, David (1999). The Oxford History of Board Games. Oxford
University Press. p. 352. ISBN 0-19-212998-8.

[4] Kawa, Luke, and Lily Katz. "These Charts Show That Pokemon Go Is
Already in Decline." Bloomberg.com. Bloomberg, 22 Aug. 2016. Web.
19 Dec. 2016.

[5] Raspberry Pi Ltd. (2016, October). [Online]. Available:
https://www.raspberrypi.org/documentation/hardware/computemodule/R
PI-CM-DATASHEET-V1_0.pdf.

[6] "Dark Tower (game)", En.wikipedia.org, 2017. [Online]. Available:
https://en.wikipedia.org/wiki/Dark_Tower_(game). [Accessed: 23- Jan-
2017].

[7] Eclipse. The Eclipse Foundation, 2017. [Online]. Available:
https://eclipse.org/. [Accessed: 23-Jan-2017].

Team 13 Castle Quest

7

[8] JUnit, 2017. [Online]. Available: http://junit.org/junit4/. [Accessed: 23-
Jan-2017].

[9] Oracle, “A Swing Architecture Overview” [Online]. Available:
http://www.oracle.com/technetwork/java/architecture-142923.html.
[Accessed 23-Jan-17].

[10] Fusion 360. Autodesk, 2013. Available:
http://www.autodesk.com/products/fusion-360/overview

FIGURES
[A] Tested.com, 2016. [Online]. Available:

http://d2rormqr1qwzpz.cloudfront.net/uploads/0/5/35941-
darktower_field.jpg. [Accessed: 11 - Dec - 2016]

