

Presentation Overview

- Current Problems
- Societal Impact
- Our Project: So-Lo
 - System Requirements
 - Block Diagram
 - Description of Components
- Alternatives
- MDR Deliverables

Current Problem

- Recording group meetings
 - Long meetings or conferences are full of information
 - Often meetings are recorded for audio only
 - Camera is usually in a fixed position for A/V recording

Significance of Current Problems

- The purpose of meetings is to communicate essential information and solutions from person to person.
 - People may forget important details from a meeting which results in:
 - delayed or incomplete work
 - making meetings inefficient

UMassAmherst Significance of Current Problems

- Most meetings are recorded with one camera overlooking the room
 - Fixed Position
 - Requires manual turning if needed
 - Hard to focus on the person that is speaking when multiple people are shown on the screen

Solution: So-Lo (Sound Locator)

- System that detects the location of sound and captures video and audio.
 - System takes in sound (such as voice) as input
 - System localizes the source of the sound
 - Rotating platform will turn towards that location
 - Camera mounted on rotating platform will focus on person speaking and record video and audio

Solution: So-Lo (Sound Locator)

- Desired end product
 - Automated sound localizer which directs the camera

towards a source of sound

- Designed for small to medium sized meeting rooms
- Video and audio recording
- Easily accessible recording

Non-Technical Alternatives

- Can use a setup involving one camera that overlooks the whole room
- Use multiple cameras
- Manually record a meeting

Technical Alternatives

- Polycom Conference Room Microphones
 - CX5500 Unified Conference Station
 - Price: \$5000
 - Uses 5 cameras
- Logitech BCC950 Video Conference Webcam
 - Price: \$250
 - Remote controlled
 - 180 degree pan

Impact

- Effect on Individuals
 - Give easy access to meeting content for later reference
 - Provides important information for people unable to attend the meeting.
 - Keeps everybody involved.
- Effect on Groups
 - Increase productivity

Impact

- Societal Impact
 - Increase company and workplace productivity
- Possible Implementations
 - Improved hearing aids
 - Surveillance
 - Law enforcement

Goals

- Precisely identify the source of a sound
- Automatically turn camera toward the sound source
- Take the shortest path when turning camera towards the sound source
- Store video/audio on sd card

Sound Location Techniques

Method 1: triangulation

 determining the location of a point by measuring angles to it from known points at either end of a fixed baseline, rather than measuring distances to the point directly

Method 2: time difference of arrival

- use the time difference of arrival due to the distance between the microphones
- used with pressure microphones or particle velocity probes

Triangulation

- The sound source location is found using the known (fixed) position of the microphones
- We need to know the sound's angle of incidence

UMassAmherst

$$\cos \theta_1 = \frac{l_1^2 + (x+d_1)^2 - x^2}{2l_1(x+d_1)}$$
$$\cos \theta_2 = \frac{l_2^2 + (x+d_2)^2 - x^2}{2l_2(x+d_2)}$$
$$x = \frac{l_2 \left(l_1^2 - d_1^2 \right) + l_1 \left(l_2^2 - d_2^2 \right)}{2(d_1 l_2 + d_2 l_1)}$$

TDOA (Time Difference of Arrival)

TDOA measurements define spheres or circles as possible emitter positions

$$egin{aligned} &(a_x-x_0)^2+(a_y-y_0)^2=r^2\ &(b_x-x_0)^2+(b_y-y_0)^2=(r+330b_s)^2\ &(c_x-x_0)^2+(c_y-y_0)^2=(r+330c_s)^2 \end{aligned}$$

bs: time difference between mic 1 and mic 2
cs: time difference between mic 1 and mic 3

Block Diagram

Diagram

Department of Electrical and Computer Engineering

So-Lo

Diagram

Requirements

- Real time sound locator
- Rotating stand that points almost immediately to the location of sound
- Effective for small to medium sized rooms
- Utilizing the right microphone sensitivity

Requirements: Inputs and Outputs

Input

• Sound

Output

- Source of sound
- Video and sound recording

Parts

- USB Webcam
 - Store video/audio on an sd card
 - Connect to Raspberry Pi
 - Easily mountable on motor
- Unidirectional electret microphones
- Motor with Slip Ring
 - AC620012S
 - 360 degree rotation

Software

- Python and C programming to
 - control motor
 - control camera
 - real time angle calculations

MDR Deliverables (Updated)

- Mainly present the concept of sound location
 - Set-up microphone array to sense sounds. (Suzet)
 - Raspberry Pi and Python Code to determine the order of which microphones receive signals. (Dan)
 - Code which implements TDOA using the order of microphones and estimate sound source location angle. (Ming)
 - Control rotation angle of the motor. (Andy)
- No implementation of video recording and saving.
 - Does not present the concept of sound locating.