#### UMassAmherst Midway Design Review

# Triton

Team 11 December 9, 2016



Department of Electrical and Computer Engineering

#### Triton

- ECE Advisor: Prof. Andras Moritz
- MIE Advisor: Prof. Frank Sup



Emil Safonov, CSE



Calvin Tran, EE



Kevin Tong, ME



Tony Hua, ME

Extended Underwater Monitoring of Biological Phenomena

- No economical solution for underwater monitoring
- UMass-Amherst ecologists interested in studying spawning behavior of declining populations of river herring
- Triton will allow researchers to observe and record underwater biological phenomena

### **Requirements Analysis: Specifications**

- Must be able to operate up to 20 feet in depth under freshwater
- Must have an operational distance of up to 300 feet from base station
- Must be able to achieve run time and HD quality video feed up to 3 hours
- Must be able to provide sufficient video quality and lighting for operator to discriminate target underwater object(s) under average condition
- Should be capable of storing 3 hours of footage
  - 1080p, 72 Gigabytes of data
- Should be able to readjust its orientation through control loop

## Requirements Analysis: Inputs and Outputs

Inputs:

IMU (depth, compass)

- Moisture level
- HD 1080p Webcam
- User control

Outputs:

- Orientational data/depth
- Water leakage alert
- Live video feed
- Distance reading

## System Block Diagram of Stock ROV



#### Visual Representation

![](_page_6_Figure_2.jpeg)

## Our Previous Solution: Block Diagram

![](_page_7_Figure_2.jpeg)

Department of Electrical and Computer Engineering

## Our Redesigned Solution: Block Diagram

![](_page_8_Figure_2.jpeg)

Department of Electrical and Computer Engineering

## **Base Station**

![](_page_9_Figure_2.jpeg)

## WiFi Setup - Raspberry Pi and Ethernet Adapter

- Test results
  - 2.4 GHz band 250 Feet
  - Latency
    - Wired: 30-120 ms
    - Wireless: 50-300 ms at < 250 ft.
  - Power Usage
    - 4200 mAh with WiFi for raspberry pi and adapter
  - Video Quality: 720p, 5-30 frames per second (wireless)

![](_page_10_Picture_10.jpeg)

## Radio Boat

![](_page_11_Figure_2.jpeg)

## Boat Design

![](_page_12_Figure_2.jpeg)

#### **Computational Fluid Analysis**

ROV

![](_page_13_Figure_3.jpeg)

Top speed = 1 m/s Total force on ROV = 7.0 N Max thrust output of each motor = 6.76 N Thrust output of each motor = 3.5 N Air drag = 0.0012 N Water drag at 0.20 inches = 0.0016 N 0.0089% increase in power consumption

![](_page_13_Figure_6.jpeg)

![](_page_13_Figure_7.jpeg)

## ROV

![](_page_14_Figure_2.jpeg)

## Piston Ballast Engine

- Requirements
  - System attains neutral buoyancy at operating depth (~20ft)
  - Improves total power efficiency of the ROV system
- Primary Components
  - Stepper motor
  - Solenoid-actuated brake
  - 12v Power Supply

General schematic of piston

![](_page_15_Figure_10.jpeg)

## Piston Ballast Engine

- Stepper motor
  - Precise control of rotor position and speed
  - Maximum torque at low speed
  - Low efficiency, high load when performing no work
  - No position feedback
- Piston Materials
  - Acrylic or 3D printed w/ hydrophobic coatings
  - O-rings seals and silicone lubricant

## Piston Ballast Engine

![](_page_17_Figure_2.jpeg)

#### **PCB: Ballast Driver**

- Control stepper motor
- Idle, increase, decrease

![](_page_18_Figure_4.jpeg)

## Sensors

- DHT11
  - Moisture
  - Temperature
- MPU-9250
  - Acceleration
  - Compass
  - Depth

![](_page_19_Picture_9.jpeg)

![](_page_19_Picture_10.jpeg)

![](_page_19_Picture_11.jpeg)

## Previously Proposed MDR Deliverables

- Live video stream
- Responsive flight controls
- Maintains depth underwater
- Prototype of WiFi setup
  - Working range of around 300 feet\*
  - Showcase of video feed and controls through WiFi
- Demonstration of OpenROV in pool

### **ROV Pool Demonstration**

![](_page_21_Picture_2.jpeg)

#### Wi-Fi Demostration

![](_page_22_Picture_2.jpeg)

## **Proposed CDR Deliverables**

- Demonstration of ROV in lake setting
  - Attainable depth of 20 feet
  - Finalized Wi-Fi boat and Wi-Fi network
    - Demonstration of video feed and motor controls via WiFi
    - Working range of about 300 feet
  - Functional prototype of ballast system
    - Variable displacement of environment water
    - Controllable by operator
    - Functional solenoid-actuated brake
  - Implementation of humidity sensor and IMU
  - PCB
    - Driver circuit for the auto ballast system

#### **Proposed Timeline**

![](_page_24_Figure_2.jpeg)

## **Cost of Materials**

| Item                         | Item Cost       | Shipping Cost |
|------------------------------|-----------------|---------------|
| BeagleBone Black             | 56.61           | 0             |
| USB WiFi Module              | 19.95           | 8.59          |
| Syringes (4)                 | 2.12            | 10.00         |
| Acrylic Cement               | 11.81           | 0             |
| Cement Applicator            | 5.75            | 0             |
| MPU-9250                     | 9.99            | 0             |
| DHT11 Humidity Sensor        | 5.00            | 0             |
| PCB                          | 80.00           | 10.00         |
| External Battery Power       | 15.99           | 0             |
| Arduino Uno                  | 16.06           | 0             |
| Battery Tube                 | 39.00           | 10.00         |
| <b>3D Printed Components</b> | 50.00           | 0             |
|                              |                 |               |
|                              | Total Cost      | 350.87        |
|                              | Budget Leftover | 149.13        |

## Thank You

#### Questions?

Department of Electrical and Computer Engineering