Critical Design Report Presentation

Team 11 February 28, 2017

Introduction

- No economical solution for extended underwater monitoring
- Ecologists from UMass Amherst interested in studying spawning behavior river herring
- Triton will allow researchers to observe and record underwater biological phenomena

Requirements Analysis: Specifications

- Must be able to reach a depth of 20 feet underwater
- Must be able to operate up to 300 feet away from the base station
- Must be able to operate and provide HD quality video feed up to 2 hours
- Must be able to provide sufficient video quality and lighting to ease navigation underwater
- Should be able to readjust its orientation through control loop

System Block Diagram of Stock ROV

Visual Representation

System Block Diagram

Power Flow

Subsystem 1: WiFi Setup

- Raspberry Pi and ethernet adapter
- Video saving capabilities on local drive

Subsystem 1: Housing Design

Subsystem 1: Housing Design

Subsystem 2: ROV

- Main component of project
- What was done?
 - Rewired
 - Old/damaged electrical components were replaced
 - Re-sealed electronics payload
 - water tested
- Depth/compass sensor
 - For telemetry and accurate navigation
- Humidity sensor
 - Used for detecting leaks in electronics compartment

- Preliminary piston prototype
 - Stepper motor driven by circuit and user input
 - Separate 12v power source
- Passive ballasting
 - Does not draw energy when stepper motor is not energized
 - Self-locking lead screw eliminates need for system brake to prevent rotation when de-energized

I Mass Amherst

- Power calculations
 - Initial runtime = 1:21 hrs
 - Need to extend -- reduce power consumption
- Performance improvement
 - Target runtime = 3:51 hrs
 - 226.7% increase to current operable duration

- Preliminary piston prototype
 - PVC and acrylic construction
 - Easily machined, constructed
- Motor selected
 - Torque requirements
 - Geometric constraints
 - Power considerations

Subsystem 3: PCB

- Driver for stepper motor
- Voltage Regulator 12V to 5V

Previously Proposed CDR Deliverables

- Demonstration of ROV reaching 20 feet depth in a lake
- Final design of the boat with WiFi setup onboard
- Prototype of a working ballast system
- Prototype of PCB
- Implementation of humidity and depth/compass sensors

Boat Water Test

Fully Closed ROV Water Test 1

Fully Closed ROV Water Test 2

Proposed FPR Deliverables

- Successful lake test for the ROV
- Fully integrated ballast system
- Finalized WiFi setup and buoy design
- HD video capture and storage capabilities onboard the buoy and computer base station
- Implementation of humidity sensor with UI alert

Proposed Timeline

<u>UMassAmherst</u>

Cost of Materials

Item	Cost	Shipping Cost
BeagleBone	56.61	0
WiFi Module	19.95	8.59
Syringes (4)	2.12	10
Acrylic Cement	11.81	0
Cement Applicator	5.75	0
Styrofoam/Epoxy (2)	25	0
Humidity Sensor	13.79	13.79
Foam Ring Pool Buoy	25.13	0
L293DNE IC Chip (5)	17.70	10.00
Silicon Spray Lubricant	8.62	0
Adjustable Angle USB	5.99	0
Battery Pack	15.99	0
Rasberry Pi Model B	49.99	0
PCB	80.00	10.00
	Total Cost	390.83
	Current Budget	109.17