UMassAmherst Midway Design Review

Search And Find Emergency Drone "SAFE Drone"

Team 4 December 5, 2016

Department of Electrical and Computer Engineering

Advisor: Professor Leonard

Jamie Kline, EE

Brad Marszalkowski, EE

Serena Thomas, EE

Bjorn Galaske, EE

Department of Electrical and Computer Engineering

Advisor: Professor Leonard

- Fly a drone over a predefined area in order to find lost and injured hikers who have a phone but no reception
- Detection of signal emitted by a cell phone searching for service/cellular tower
- For use in wooded areas with no reception. This could also be useful for winter sports in case of an avalanche

<u>UMassAmherst</u>

UMassAmherst What were the proposed MDR deliverables?

• Manual RF control of the drone that doesn't interfere with SDR

- Able to alert supervisory system upon IMSI identification
- Supervisory micro software functions complete: control flight waypoints, poll GPS

• Landing/Distance sensory able to detect distance accurately

Old Approach

- Previously, project assumed capture of IMSI within cellular signal of GSM network phone
- Deemed unfeasible within time and budgetary constraints
 <u>New Approach</u>
- Detection of handheld cellular signal via received signal strength
- "Heat map" (gradient) created by mapping signal strength levels to GPS coordinates together

- UAV (Unmanned Aerial Vehicle) capable of autonomously scanning a pre-defined area.
- Ability to measure signal strength of 835-915MHz signals from 100'.
- Ability to record signal strength/GPS coordinates.
- Ability to return to home on completion.
- Present data to search teams by overlaying signal strengths onto map of mission.

UMassAmherst ... Revised MDR Deliverables

- Manual RF control of the drone that doesn't interfere with SDR
- Demonstration of detector picking up GSM band without interference from drone transmitter for safety on campus
- Able to alert supervisory system upon IMSI identification
- Generate "heat map" given GPS coordinates and signal strength levels detected
- Supervisory micro software functions complete: control flight waypoints, poll GPS
- Landing/Distance sensory able to detect distance accurately

<u>UMassAmherst</u>

<u>UMassAmherst</u>

All objectives (then some) achieved:

- Demonstration of fully autonomous mission/flight
 Including tuning of PID loops for stability
- Implement MAVLink protocol between micro and flight controller
 - Demonstration of receiving data incl. GPS, mode, etc
 - Demonstration of modifying flight mode

UMassAmherst Flight System: Autonomous Mission

UMassAmherst Flight System: Autonomous Results

UMassAmherst Flight System: MAVLink madness

UMassAmherst Flight System: Poll GPS Data

https://3drobotics.zendesk.com/hc/article_attachments/202536196/Pixhawk_Top2.png

<u>UMassAmherst</u>

UMassAmherst Distance Sensor

Landing Feedback Sensor

- Ultrasonic
 - MaxBotix
 - Sparkfun Ping

Landing Capability

• Smooth transition

Terrain Following

• Able to avoid a <u>10' Canopy std dev</u>

UMassAmherst Distance Sensor -- Experiment Setup

10"x37.5" board 122" tree branch with appx $\frac{1}{4}$ " girth (at detection point)

UMassAmherst Distance Sensor -- Results

Click here for an overview of the wireless components used in a typical radio transceiver.

MAX2015 Recieved Signal Strength Indicator (RSSI):

- -65 to 5 dBm RF input
- 0.5v 1.8v Output
- 18.1 mV/dBm

dbm = 10log(P/1mW)dbmV = 20log(V/1mV)

Figure 1. This circuit sounds a buzzer alarm when it detects an RF signal in the range 100MHz to 3000MHz, above approximately 35dBm.

http://s.eeweb.com/articles/2011/10/20/rf-bug-detector-circuit-1319152903.pdf

UMassAmherst

Power detection

- Antenna from our circuit on spectrum analyzer
- Calling serena from • my phone
- shows the frequency of the cell phone when placing a call
- 10uW transmitted -decent reception

Results Comparable To Spectrum Analyzer Pwr Measurement ~50 dBm

IMSI Captured

Bjorn's cell phone contacting a tower almost every 5ms trying to secure a connection with Serena's cell phone.

This is the Raw output voltage from the MAX2015

Currently:

Comparator/Buzzer circuit for demonstration.

Serena is working on the gain stage into the ADC and filtering out unwanted signals.

UMassAmherst

- Needed for safety
- Using antenna from circuit, spectrum analyzer shows the remote control doesn't interfere with the 900MHz band

🔆 Agilent Tech	nologies S	pectrum /	Analyzer				0	9:10:13 N	Nov 18, 2	2016	Rev 2.0
Marker 2.410 Auto Range) 0 GHz Preamp	On	Atten: 4 d	В	Ext Gain (0.0 dB			TRACE 1 TYPE W DET P		Marker Marker
10 dB/div	Ref 0.0 dBm	ı							2.410 0 -71.88 (
Log											Normal
-10.0											
-20.0										1	Delta
-30.0										t	
-40.0											Off
-50.0											
-60.0											
-70.0	4 1 1			1M.	NNERH.	hant. h	n Mara	u le throad			
-80.0	MAMA	MMMvy	MANY	AMAM YY	n www.	VV WV	- An WW	awa ^w a a a a a	AN VII	ļ ļis	
-90.0											
											More
Start 700 MHz Stop 2.500 GHz Res BW 5 MHz VBW 5 MHz Sweep Time: 502.35 ms (401 pts)								1 of 2			
Screen Image capture in progress ***********************************							Int Ref 🖕				

 Spectrum analyzer shows the exact frequency the remote control interferes with

 To filter out the 2.4GHz remote control frequency from the power detector circuit, need filter (Used 1.3GHz LPF)

- Now, can test the range of the circuit using a cell phone that doesn't have service
- Tested up to 85ft, circuit can detect cell phone signal trying to connect to the tower

<u>UMassAmherst</u>

UMassAmherst Supervisory Microcontroller

Inputs:

•ADC in order to convert analog power signal to digital data USART in order to receive GPS, Speed, etc., from flight controller

Outputs:

•USART to EEPROM to save power level and GPS Coordinate data •SPI to USB interface to download data file to host PC

Functions:

•Keep track of state Lift off Traveling (Without sampling) Traveling (With sampling) Landing Calculate sampling speed

UMassAmherst Analog Sampling

Analog to Digital Converter

•Convert analog signal from power detector circuit •High resolution (10 bit ADC)

•Sample 500mV to 1.8V with 3.3V reference voltage •Minimum 500KSPS **OUTPUT VOLTAGE**

403 distinct power levels!

558 - 155 = 403

0x09B to 0x22E .1861 dBm per bit

B

UMassAmherst Data

Power Level & GPS Data

Power level data saved as 4 byte integer representation of power level
GPS coordinate data is in decimal degree format, saved as 4 byte floating point
Data file saved on EEPROM as list of Power Level & GPS Coordinate tuples
Used by host PC to create visual representation of power signatures

Example Data File

155, (42.393960, -72.528880) 175, (42.393930, -72.528962) 250, (42.393900, -72.529044) 318, (42.393870, -72.529126) 400, (42.393840, -72.529208) 558, (42.393810, -72.529290) 400, (42.393780, -72.529372) 318, (42.393750, -72.529454) 250, (42.393720, -72.529536) 175, (42.393690, -72.529576)

UMassAmherst Heat Map

Requirements:

- •Software needs to be easy to run.
- •Heat map needs to be customizable.
- •Visualization needs to be accurate.
- •End result needs to be flexible for various situations.
- •Rendering needs to be automatic given any GPS/power data file.
- •Image needs to be able to be overlaid on top of satellite map.

Challenges:

- •No plug and play code available.
- •Generic point merge model not sufficient:
 - Resolution not small enough to eliminate inaccuracies.
 - Too many data points saturate the image.
 - Based on quantity of points, not a weighted system.

Computer repair near Bost

My Places

Temporary Places

UMassAmherst Heat Map

Solution:

Points are based on power level measured, not quantity of points.Program takes few parameters.

Visualization pinpoints location of signal with error congruent with number of data points (aka: more data points=more accuracy)
Data is averaged out so few erroneous signals won't throw off entire map.

Customization Options:

5 Different Color Schemes w/ varying degrees of temperature gradient.
Opacity from clear to opaque (0-255).
Dot size = to number of pixels (1-P).
User defined data file.

<u>UMassAmherst</u>

- To transmit on the 900MHz band, which may be necessary later, need a technician class HAM radio license, which is in progress
- The drone is registered as a UAS (Unmanned Aircraft System) with the FAA, which is needed in order to fly

UMassAmherst

Path to Project Completion

<u>By MDR</u> (completed):

- Autonomous flight: sensor polling, control of craft
- Detector circuit sensing GSM band w/out interference from manual controller
- Generate "heat map" given simulated GPS/detected signal levels
- Landing/Distance sensory able to detect distance accurately

<u>By CDR</u> (critical subsystem integration):

- Microcontroller code complete
- Sensing circuit output scaled for A2D
- Flight-ready system prototype
- Mainboard + sensing PCBs drafted

<u>By FPR</u> (tuning + final touches)

- User interface software complete
- Signal level detection at range spec.
- Energy consumption/reserve algorithms
- Mechanical fixturing/wiring/enclosures

UMassAmherst Budget

Under and on track:

Flight controller	\$69.86	
Propellers		\$16.00
New Receiver		\$30.48
Telemetry cable	\$22.00	
RTL-SDR		\$25.95
Range sensor		\$62.00
Components/Parts	<u>\$108.92</u>	
Total Used:		\$335.21

Budget Remaining: **\$164.73** (PCBs + parts)

UMassAmherst Proposed CDR Deliverables

1. Output of signal detection circuit compatible with the ADC; comparator portion of signal detection circuit designed/routed ("daughterboard")

1. Microcontroller functions completed: Capability to write ADC and

GPS data to EEPROM, Ability to output data from EEPROM to host

PC, Sampling functions complete, Finite State Machine Complete.

1. Main PCB routing complete: board/system mechanicals, microcontroller, PC interface, EEPROM, battery connections. Integrate "daughterboard" support and power supply routing (Bjorn).

1. PCB power supplies and RF portion of signal detection circuit designed/routed ("daughterboard")

SAFE DRONE Team 4: Serena Thomas, Jamie Kline, Bjorn Galaske, Brad Marszalkowski

Questions?