
SENIOR DESIGN PROJECT 2017, TEAM 1, FINAL PROJECT REPORT 1

AutoUmp
Timothy Adams, CSE, Matthew Barnes, EE, Jason Camiel, EE, and Justin Marple, CSE

Abstract—Determining strikes and balls accurately is a core aspect of baseball. However, umpires are inaccurate or biased, and
current technology solutions used in the MLB are prohibitively expensive. AutoUmp is a self-contained pitch calling solution installed in
the home plate itself. It uses optical sensors and real-time image processing algorithms to detect strikes and balls.

Index Terms—Stereo Cameras, Image Processing, Baseball, Embedded System

F

1 INTRODUCTION

D ETERMINING strikes and balls accurately and effi-
ciently is a core aspect of the game of baseball, yet

doing so without a professional umpire is difficult and
inaccurate. In order to do so, an umpire must decide if a
pitch has passed through the strike zone, a variable volume
that consists of the space above home plate and between
the batters knees and halfway up their torso. Even in little
league games, pitches can easily be thrown in the region of
70 miles per hour (mph), reaching the home plate in 0.65
seconds [1]. This difficulty directly correlates to incorrect
calls, which can lead to significant frustration from players,
coaches, and spectators alike, especially in a close game. In
the MLB, where salaries for umpires range between $120,000
and $350,000 [2], 15% of strikes are called as balls and 13.2%
of balls are called as strikes [3].

Though the challenges associated with accurate pitch
calling are widely apparent, little has been done to seek
to resolve the problem. The MLB has adopted PITCHf/x
technology to augment calls made by umpires, which is
capable of tracking the entire trajectory of each pitch [4].
However, the technology is extremely expensive and only
installed in MLB baseball stadiums. It consists of two cam-
eras installed in the stands above home plate and first base,
which capture approximately 20 images of the pitch during
its flight and feed this information to a high-speed computer
to determine the pitchs 3-D trajectory through space [5]. The
expensive and time-consuming installation costs prohibit
similar technology from being widely adopted anywhere
except the MLB level. Other solutions frequently employed,
such as having a catcher or a coach act as umpire, do little-
to-nothing to solve the inherent problem and can introduce
bias. Therefore, there still remains a need for a portable,
unbiased, and accurate pitch detection solution that can be
used effectively by little-league teams and pick-up games.
This is the niche that AutoUmp seeks to fill.

AutoUmp consists of a self-contained, battery operated
system stored in the home plate itself, with results sent to
the user through an Android app connected to the plate via
Bluetooth. The user of the app can input the batter height
for an accurate determination of the strike zone, see the calls
the system makes, and edit any calls if needed. Inputting

T. Adams, author from Arlington, MA (email: tbadams45@gmail.com).
M. Barnes, author from Southbourough, MA (email: mbz1918@gmail.com).
J. Camiel, author from Framingham, MA (email: jcamiel@umass.edu).
J. Marple, author from Pepperell, MA (email: jmredsoxfan1010@gmail.com).

the height of the batter provides a quick, easy way for the
system to determine the height of the top and bottom of the
strike zone by using data to find an approximation of knee
and mid-torso height of the batter.

TABLE 1
Specifications

Specification Goal Actual
Accuracy of
professional
ump

85% accuracy in
pitch classification

83% accuracy in
pitch classification (n
= 100)

Useable for
batters up to
heights of
6’6”

Detect 70 in up, 30 in
to each side

Detect 60 in up, 20 in
to each side

Pitch speeds
of 70 mph

Operate at 60 frames
per second

Operate at 60 frames
per second

Real time use <2 second delay <1 second delay
Battery life
greater than
length of
game

3 hour battery life 20 hour battery life
(2.2W operation)

Robust,
self-standing
system

Self-enclosed,
withstand impacts of
normal play

Self-enclosed, with-
stand impacts of nor-
mal play

Enable
varying
heights

Control strike zone
via app

Control strike zone
via app

Through our teams own experience in baseball and
market research, along with the feedback from other college-
level baseball players, we have determined the requirements
and specifications needed for effective implementation, out-
lined in Table 1. As our target market is youth to young
adult baseball and wiffle ball, the heights of players are far
below our 6 feet 6 inches requirement, and it is unlikely that
any ball will be thrown higher than that. It is fairly routine
to see balls in the 50-70mph range in youth baseball; a frame
rate of 60 frames per second (fps) enables us to effectively
capture pitches at this speed without requiring a fisheye
lens, significantly increasing the ease of implementing an
accurate algorithm. This system is designed to substitute
for an umpire, so the pitch call needs to be made quickly
enough that play is not significantly slowed in comparison
with a human umpire. Finally, it is a core part of baseball
to step on the home plate, so the system must be robust to
withstand such impacts.

SENIOR DESIGN PROJECT 2017, TEAM 1, FINAL PROJECT REPORT 2

2 OVERVIEW

To create a self-contained system like the one described,
we embedded two cameras into the home plate, protecting
them with sapphire watch crystals. We monitor each camera
for a ball flying overhead and, if seen, determine the point
at which it passes through the strike zone. For our purposes,
we model the strike zone as a plane, rather than a volume.
Using just one camera does not provide enough information
for our purposes, as each pixel location corresponds to a 2-D
vector of where the ball might be in the plane of the strike
zone. Using two cameras, however, allows us to find the
intersection between these two vectors and calculate both
the x- and y-coordinates of the ball as it passes through the
strike zone plane.

We considered several other sensing technologies, in-
cluding radar and ultrasound. We found radar was ex-
tremely noisy and would require a prohibitively large an-
tenna to achieve the wavelengths required to identify a
baseball. Ultrasound seemed promising and afforded the
potential of extremely cheap sensors, but also suffered from
significant noise. Due to the maturity of optical sensors and
the ability to easily detect moving objects via background
subtraction, we opted to stay with image sensors.

Each camera must be capable of capturing data at 60
frames per second with a 320x240 resolution and a 106-
degree field of view in the direction of the pitch. These
values enable us to see a ball in at least two frames which is
a requirement of our image processing algorithm while also
reliably distinguishing a ball from stray noise in the image.

The hardware that interfaces with the cameras and runs
the image processing algorithm must be small enough to
fit inside the plate and fast enough to both read 4.6MB

sec of
data from each camera and execute our image processing
algorithm (320 ∗ 240pixels

frame ∗ 60 frames
sec ∗ 1 byte

pixel = 4.6MB
sec). We

chose the XMOS XUF216-512-TQ128 16-core processor for
this purpose [6]. We had originally considered using an
FPGA for the same purpose, but decided on the XMOS due
to its ability to allow us to write all of our algorithms in C
rather than in Verilog for FPGA, aiding greatly in reducing
code complexity and testing.

Fig. 1 outlines the functional blocks and interfaces con-
necting them at the hardware level. We use a single XMOS
16-core processor, split into 2 tiles, which act as miniature
8-core processors with their own dedicated memory with
a highly optimized communication interface connecting
them. Fig. 2 outlines the tasks of the different cores. The
cameras each send image data to the camera master tile,
which performs background subtraction on consecutive im-
ages to identify objects in motion. This data is then sent
to one of 6 cores, which denoise and identify objects in
the image using a flood fill algorithm. The ball’s location
from each camera is sent to an object tracker core, which
determines if the ball has crossed the strike zone plane and,
if so, calculates its exact position in the strike zone plane.

Serving as the primary point of interaction with the user,
our app will display the current pitch count and general
game information such as the score and inning number.
Although both Android and iOS are equally acceptable
options, we opted to develop an Android app due to a

Fig. 1. Hardware Block Diagram

Fig. 2. Software Block Diagram

majority of the team having access to one and overall larger
market share.

2.1 Cameras

Capturing and utilizing data from two cameras is in many
ways the central component of our project. Choosing the
correct camera sensors and lenses requires balancing a num-
ber of camera properties as well as cost. In order for our
algorithm to perform correctly and to meet specification, we
need to capture the baseball in at least two frames and be
able to see the baseball up to a height of 6 feet 6 inches.
Increasing the frame rate at which we capture increases the
number of frames where we will see the baseball, while
increasing the resolution improves our ability to distinguish
the baseball from other objects or noise. However, higher
resolutions and frame rates result in higher computation re-
quirements, as our image processing algorithm will need to
operate on a significantly greater number of pixels. Another
property that can be manipulated is the field of view, which
describes the angle of the image cone that the camera can
see. Increasing the field of view significantly to that of a
fish-eye lens (roughly between 130-180 degrees) can result
in distortion of the image, which can affect the accuracy of
our calculations.

Ultimately, we purchased the OV7740 image sensors
from Omnivision, capable of 60fps at 320x240 resolution.
These sensors use the SCCB interface to communicate with
the processor, developed by Omnivision [7]. The custom
PCB we designed around this chip is seen in Fig. 3. In
addition, we used the JSD5011 lenses from Shenzhen JSD
Optoelectronics Company, due to their 110 degree horizon-
tal field of view and 80 degree vertical field of view.

SENIOR DESIGN PROJECT 2017, TEAM 1, FINAL PROJECT REPORT 3

Fig. 3. Top layer of custom designed camera PCB

2.1.1 Frame Rate and Field of View
Our first step is field of view requirements for our lenses.
There are two different field of views we care about: in
the direction of the pitch, and perpendicular to the pitch.
The first is used to ensure that the pitch is captured in at
least two frames; the second is used to ensure that the entire
strike and the nearby surrounding area zone is captured by
both cameras. We examine each in turn.

Our field of view in the direction of the pitch is related
both to the speed of the pitch and to our frame rate.
Because we require two frames in which the pitch appears
to perform our image processing algorithm, the ball cannot
travel more than half of the image in one frame. At the same
velocity, the ball travels ”faster” across the image when its
height is lower, as the amount of distance in real-world
space covered by each pixel is less. We must therefore then
set a low height at which to perform our calculations, in
order to meet our worst case. For a 48 inch tall batter, the
bottom of the strike zone is ˜15.6 inches. We set our height
of the ball to be 14.6 inches, then, to be slightly lower than
this.

The distance ds at a given height h seen by a lens with a
field of view of f degrees is

ds = 2 ∗ h ∗ tan(radians(f)
2

) (1)

The distance dt a ball travels during one frame is

dt =
speed

fps
(2)

where speed is expressed in either m
sec or in

sec , and fps
is the frames per second of the image sensor. To meet our
requirement, then, ds/dt ≥ 2 must hold true at when h =
14.6 in. Solving for fps, we obtained a minimum field of
view of 106 degrees as necessary in the direction of the pitch.
Our final system had a field of view of 110 degrees in this
direction.

In the plane of the strike zone, we required that both
cameras see the entire strike zone and the inches surround-
ing the strike zone where a call may be disputed. Visually
inspecting figures such as Fig. 7, which show the area seen
by a camera with a given field of view, we determined that
a field of view of 80 degrees would allow us to meet our
requirements. In addition, we opted to tilt the cameras 15
degrees inward to make the most of the entire field of view

available to us. This proved to be advantageous – our final
image processing algorithm uses only the middle 3/4ths of
the image, restricting our field of view from our lens’ spec
of 80 degrees to 60 degrees. Fig. 7 shows the final field of
views used by our algorithm.

2.1.2 Resolution
Image resolution was another important factor with a vari-
ety of trade offs. Increasing image resolution increases the
ease of detecting a ball and distinguishing it from random
noise, as well as increasing the accuracy of our calculations,
especially at higher heights. At the same time, higher res-
olutions results in significantly more computational time
required, as any doubling of the sides of an image results
in a four-fold increase in pixels. Given our need to operate
all of our object detection and tracking at 60fps, we required
an image resolution as low as possible.

Our limiting factor, then, was the size of a ball at our
maximum height of 6 feet 6 inches. Visually inspecting
MATLAB plots of the kind see in Fig. 4 showed us that a
resolution 320x240 pixels (QVGA) would still allow us to
see the ball in 25-30 pixels, providing enough information
to identify it distinctly as a ball.

Fig. 4. Intersection of ball with various pixel rays. This demonstrates a
worst case: a field of view of 105 degrees with a resolution of 240 pixels,
with the ball 6 feet 6 inches high. Even so, we see the ball with 5 pixels
from each camera, for a total of approximately 25 pixels.

2.2 XMOS Processor and Camera Communication
In order to read our raw data from our camera sensors fast
enough, we require an efficient hardware interface. This was
one of the reasons why we chose the XMOS XUF216-512-
TQ128 16-core processor. This processor functions similar
to an FPGA, in that the hardware interface can be written
in software, but unlike an FPGA, the code can be written
sequentially in C. In our case, the hardware interface needed
to be a databus to the Omnivision cameras. Each camera has
a HREF, VSYNC, PCLK, 8 data lines, and a SCCB interface.
HREF goes high every time a row starts, VSYNC goes high
at the beginning of each image and PCLK goes high every
time a pixel is set. SCCB is a protocol similar to I2C, which
allows settings in the camera sensor to be set.

On the XMOS processor, each of these lines is hooked up
to a 1-bit port, besides the data lines which are connected
to an 8-bit port. A port in XMOS terms is a series of digital

SENIOR DESIGN PROJECT 2017, TEAM 1, FINAL PROJECT REPORT 4

inputs that can be sampled at once. For instance, an 8-bit
port can sample 8 pins on a single clock cycle, making
it ideal for wide buses. Each port can also be sampled
and buffered automatically using an input clock. So when
sampling the pixel clock (PCLK) that can be used to tell
the hardware when to sample the data lines. This makes
efficient use of the hardware and only requires software to
save the buffered samples to RAM when the buffer fills up.

Due to the need to implement this interface directly, the
need for a small form factor in the plate, and the lack of
available plug-and-play options for the XUF216-512-TQ128,
we opted to design our own PCB for this chip, the top layer
of which can be seen in Fig. 5.

Fig. 5. Top layer of custom designed XMOS Processor PCB

2.3 Image Processing
The image processing block is the main block of the project,
and is represented by Fig. 2. This block is run entirely on the
XMOS microprocessors that is connected to both cameras
and is programmed in XC, a variant of C that is specific
to XMOS [8]. Each camera captures data at 60 frames per
second. Because a pitch may fly through the field of view
of the cameras at any time, each frame must be processed
to determine if a pitch has passed through the camera.
Furthermore, each frame must be processed before the next
frame is read, resulting in a 16.67ms (1

60 ms) time window.
Our image processing algorithm is pipelined, with each

section working on a different frame or set of frames. We
begin with performing background subtraction on the raw
image data to detect motion, a process where the current
frame is subtracted from the previous frame. The resulting
image removes the background and sets objects in motion
as white pixels. In addition, this image appears to have two
different balls in it, but which really represent the ball at the
two different time points the frames were captured.

The next steps, denoise and object detection (also known
as ”flood fill”, see 2), are parallelized across 6 cores, as they
are by far the most computationally expensive step. In the
denoising step, pixels are set to black if less than 3 of their 4-
connected neighbors are white. Object detection then begins
by finding connected sets of white pixels. The output is an
array of objects, each modeled as rectangles.

These arrays are passed to an object tracker core, which
unites the information from all 6 cores to track a pitch. When
the ball passes the middle of the screen, the pixel at which
its trajectory along the middle column is calculated and a

Fig. 6. Finding the intersection of the ball with the strike zone plate in
each camera.

flag is set for this camera. This pixel represents the vector
in the strike zone plane where the ball may be. When both
flags are set, the information from both cameras is combined
and the pitch is calculated. The result is then sent to the app
via Bluetooth.

Fig. 7. Axes are in inches; the blue/green region indicates the field of
views of the left/right cameras used by the algorithm to locate the pitch
in the strike zone (shown in red).

2.3.1 Meeting Real-Time Deadlines
In order to meet our real-time deadlines, we had to optimize
several steps of our code, and utilize the full processing
capability offered us by the XMOS processor. The back-
ground subtraction step is implemented in assembly, so as
to allow it to run fast enough to run on the same thread that
collects the raw camera data. This freed up a core for other
processing and minimized data transfer. The denoising step
was optimized by including a look-up table that enabled us
to examine 4 pixels at the same time.

Though these optimizations improved our performance,
our most significant bottleneck occurred at the object de-
tection stage. Our implementation of flood fill, a simple
object detection algorithm, had a final worst-case run-time
of 72ms, if the image was all white. To overcome this, we
parallelized this stage across 6 cores (3 for each camera).
Each core receives a frame, and operates the full flood fill
algorithm on it. However, rather than only having 16.67ms
to perform the algorithm, it has three times as much time, as
the next two frames are being handled by other cores. This
allowed us to increase our time constraint from 16.67ms to
50ms. From here, we relied on the fact that the images being
processed were background subtracted images, i.e. images

SENIOR DESIGN PROJECT 2017, TEAM 1, FINAL PROJECT REPORT 5

that showed change between one frame and the next. With
this being the case, we judged it impossible for more than
half of the image to be white in our use-cases, enabling us
to meet our requirement.

2.3.2 Calculating the Location of The Pitch

In order to calculate the final location of the pitch, we take
as inputs two pixel locations, one from each camera. These
values refer to the intersection of the trajectory of the ball
with the middle of the image, as seen in Fig. 6. They also
refer to a vector in the 2-D strike zone plane, indicating
where the ball might be. We can imagine these vectors as
being two sides of a triangle, where the third side is the line
connecting the cameras together. This is shown in Fig. 8.

In our system, we have the following as constants:

• The distance C between the cameras, equal to
13.25 in.

• The location of each camera, designated by [xl, yl],
[xr , yr].

• The field of view fov of each camera, equal to
80 degrees.

• The resolution res of the camera in the plane of the
strike zone, equal to 240 pixels.

• The offset angles γL = γR = 180−fov
2 − 15 =

35 degrees.

We can calculate the number of degrees each pixel covers
in the field of view with

δ =
fov

res
(3)

Furthermore, we take as input a pixel location from both
the left and right cameras, denoted as pl and pr . These allow
us to calculate the angles θ and α, using

θ = γ + (res − pl) ∗ δ (4)

α = γ + res ∗ δ (5)

From there, β is trivially found to be

β = 180− θ − α (6)

And the length L can be found by the sine rule

L = C ∗ sin(α)

sin(β)
(7)

We can then find the location of the ball [xb, yb] by

xb = xl + L ∗ cos(θ) (8)

yb = yl + L ∗ sin(θ) (9)

Fig. 8. The triangle used to calculate the ultimate pitch location. Solid
lines indicate the vectors represented by the pixel the ball is found to be
in. Dotted lines indicate the limits of the field of view for the left (blue)
and right (green) cameras. Not drawn to scale – figure is for conceptual
purposes only.

2.3.3 Limitations

Currently, our system is only capable of detecting a ball
if there is no batter present. We were able to successfully
implement a object tracking algorithm in C which was able
to isolate a ball in the presence of batter and bat, and run
this algorithm on our laptops. However, even on a laptop,
this algorithm was slow, often taking a second or more to
complete, and therefore orders of magnitude slower than
necessary to meet our constraints. We therefore simplified
our algorithm to only examine the middle 3/4ths of an
image and assume only a ball is present in this portion of
the image. This allowed us to meet our real-time constraints
- however, this also reduced our effective field of view in
both dimensions, and decreased our maximum detectable
speed to 52.5mph.

Though a more efficient implementation of the advanced
object tracking algorithm could be implemented, we believe
the primary constraint here is processing power, not coding
ability. In order for such a system to work in the presence of
a batter, more processing power would be required.

2.4 Enclosure

To perform effectively in a real world environment, the sys-
tem requires an enclosure (Fig. 9) that will protect the elec-
tronics during normal gameplay, including being stepped
on, slid into, or hit with a bat. Rather than attempt to build
such a enclosure from scratch, we opted to adapt a real home
plate to our purposes. Two holes were cut into the top of the
plate to allow the camera to see through, while embedded
sapphire watch crystals protect the lenses from shock, dirt,
and water.

The sapphire crystals were selected due to their ranking
on the Mohs hardness scale (9), which exceeds that of quartz
(7), a material typically found in the dirt of a baseball
diamond. The underside of the home plate was hollowed
out to provide space for the cameras, processor, and the
battery. 3D printed mounts raise the cameras to just beneath
the crystals and are angled 15 degrees inward to allow each
camera to see the entire strike zone.

The entire system is secured to an aluminum backing,
which fits snugly into the plate. The aluminum backing is

SENIOR DESIGN PROJECT 2017, TEAM 1, FINAL PROJECT REPORT 6

Fig. 9. The enclosure. The plate has been hollowed out to allow for the
system to fit inside.

further secured by Velcro straps to ensure system stability
throughout the game. These straps allow the backing to be
removed to allow battery charging.

2.5 App
The app is the main interaction point between our system
and the user. It will be the only place the user can inter-
rupt and change calls, and will indicate the called pitches
provided by the system. Developed for Android, the app
will allow users to start a new game and pair with their
plate via Bluetooth. After doing so, the main game screen
appears, where the user can view and update the current
pitch count, score, and inning (Fig. 10). All labels double
as buttons which increment their respective values, rolling
over to 0 if they exceed the maximum possible value (i.e. 3
for outs or strikes and 4 for balls). The user can also view
the most recent pitch on a separate screen (Fig. 11).

Fig. 10. The user can see a summary of the game and can override the
system’s call through the app.

We require two-way communication between the app
and the home plate for complete functionality. The home
plate maintains the complete game state, to allow a user to
disconnect with one device and reconnect with another if
needed. When a pitch is determined, the plate will update
the game state and send this information over Bluetooth to
the app, which will update its view with that state. Should
the user decide to undo a call, increment a score, change the
batter’s height, etc., a command is sent back to the home

plate, which maintains all the necessary logic to implement
the command. In particular, a stack is maintained of the
last 100 game states, so that the user can undo the last 100
actions.

Fig. 11. The user can view the most recent pitch’s location on a separate
screen.

3 RESULTS

Fig. 12 shows the results of 100 pitches. The location of
the points indicates the actual location of the ball, which
was wrapped in Velcro and thrown at a Velcro wall to
allow accurate measuring. The color indicates whether the
pitch was classified correctly as a ball or strike. With a
couple of exceptions, our only errors stemmed around the
edge of the strike zone itself, as would be expected. Errors
could arise from a variety of factors. A small pixel error
could impact the ultimate calculations, whether from (a)
determining where the pitch crosses the middle of the image
for either camera, (b) rounding errors, (c) modeling the
pitch as a rectangle, or (d) plotting the trajectory of the
pitch. In addition, our system is highly sensitive to objects
moving inside the image that are not the ball. While our
algorithm only considers objects inside the middle 3/4aths
of an image, it is possible that one of our team members
moving inside the image during testing could have resulted
in some of the error seen.

Fig. 12. Result of 100 pitches. Green means the correct call was made;
red indicates incorrect call.

REFERENCES 7

TABLE 2
Actual vs. Calculated Pitches

Actual Strike Actual Ball

AutoUmp
Calculated Strike 34 14

AutoUmp
Calculated Ball 3 39

Table 2 presents another view of the data, showing more
clearly that our system experiences significantly more false
strikes than false balls. When averaged out from an absolute
perspective, our system had an overall accuracy of 83%,
approximating that of a professional umpire. A comparison
from such an absolute perspective is shown in Table 3.
Breaking down our results further from Table 2, we see that
for our system, 27% of balls are called as strikes and 8% of
strikes are called as balls, as opposed to the 13.2% and 15%
seen by professional umpires [3].

TABLE 3
AutoUmp vs. Competition

Little League
Umpire

MLB
Umpire

Pitch FX
(MLB)

Our System
(AutoUmp)

Accuracy about 60% 85% 99.9% 83%
Cost $ $$$ $$$$ $

4 PROJECT MANAGEMENT

Our team dynamics have been quite good, demonstrated by
our ability to continue to work together and remain in good
spirits despite several setbacks this year. Team management
was made more difficult throughout the majority of the fall
semester, as Justin was in New Zealand studying abroad
until mid-November. As a result, we met weekly with the
four of us at a time when we were all available, and then
the three of us in Amherst met weekly with our advisor
Professor Wolf, recording and updating Justin after each
meeting. Most of our communication has occurred over
Facebook Messenger, which has allowed us to both message
and conference call with the entire team as Justin was
abroad.

Throughout the year, much of the work we have done
has been done collaboratively, with team members often
overlapping in responsibilities and taking turns driving the
project forward at different points in the semester. However,
there were one or two areas where each member contributed
significantly in the spring semester. Justin was in charge of
designing and soldering our PCBs, as well as implementing
the SCCB interface and UART systems necessary to have
each component communicate with one another. Matt was
responsible for the enclosure, and worked out the final algo-
rithm used to find the actual (x,y) position of the pitch using
the vector information from both cameras. Tim was team
manager, and responsible for implementing the image pro-
cessing algorithms and optimizing these algorithms to meet
our real-time deadlines – Justin also helped significantly in
this latter area. Jason was responsible for developing the
app, all of the ordering for our system, and building the
Velcro wall we used to demo our system.

TABLE 4
Development Costs

Item Cost ($)

Initial Prototype 380.26
PCBs and PCB Parts 478.28

Enclosure 198.87
Misc. 185.69

Total Cost 1243.20

TABLE 5
Production Costs

Item Qty. Unit Cost
($, Per 1000) Total ($)

Optical Lens 2 1.50 3.00
10000mAh Battery 1 7.00 7.00

Home Plate 1 61.99 61.99
HC-05 Bluetooth Module 1 2.60 2.60

Sapphire Crystal 2 5.00 10.00
OV7440 Image Sensor 2 2.11 4.22

XMOS Processor 1 9.75 9.75
PCB Parts 1 11.47 11.47

XMOS PCB 1 3.99 3.99
Image Sensor PCB 2 3.86 7.72

Camera Mounts 2 4.07 8.14
Total Cost 129.88

5 CONCLUSION

AutoUmp is a working system that can detect balls and
strikes. Its accuracy approaches that of a professional um-
pire for a fraction of the cost, and it is capable of de-
tecting balls up to 52.5mph. Due to its long battery life,
accuracy, adjustable batter height, and secure enclosure, it is
highly suited for pitching practice. Limitations on process-
ing power currently prevent the system from performing
acceptably while a batter is present – however, including an
extra processor in the system would likely provide enough
computational power.

6 ACKNOWLEDGEMENTS

Our greatest thanks go to Professor Wolf for his advice,
support, and his many jokes made with us and at us. Its been
an honor to be your SDP team. Thanks also to Professors
Anderson and Moritz for serving as our evaluators; Fran
Caron for his help with our orders; Professor Hollot for his
flexibility; Rick and Colby of the mechanical engineering
machine shop for their asistance with the enclosure; and the
ECE department for the extra funding.

REFERENCES

[1] Steven Ellis Pitching Tips. Pitching Speeds. URL: http://
www.thecompletepitcher.com/pitching speeds.htm.

[2] MLB.com. Much required to become MLB Umpire. URL:
http://m.mlb.com/news/article/2173765//.

[3] Beyond the Box Score. How well do umpires call balls and
strikes. URL: http : / / www. beyondtheboxscore . com /
2014/1/27/5341676/how-well-do-umpires-call-balls-
and-strikes.

[4] Sportvision. PITCHF/X. URL: http : / / www .
beyondtheboxscore.com/2014/1/27/5341676/how-
well-do-umpires-call-balls-and-strikes.

SENIOR DESIGN PROJECT 2017, TEAM 1, FINAL PROJECT REPORT 8

[5] The Hardball Times Baseball Annual 2010. What the
Heck is PITCHf/x. URL: http://baseball.physics.illinois.
edu/FastPFXGuide.pdf.

[6] XUF216-512-TQ128 Datasheet. XMOS. Feb. 2017.
[7] Serial Camera Control Bus Functional Specification. Ver-

sion 2.0. Omnivision. Mar. 2002.
[8] David May. The XMOS XS1 Architecture. XMOS. 2009.

