
AutoUmp

Department of Electrical and Computer Engineering

ECE 415/ECE 416 – SENIOR DESIGN PROJECT 2017

 College of Engineering - University of Massachusetts Amherst

SDP17

Abstract

Block Diagram

System Overview

Results

Specifications

Timothy Adams, Matthew Barnes, Jason Camiel, Justin Marple
Faculty Advisor: Prof. Tilman Wolf

Acknowledgements
Our hearty thanks to Professor Wolf for his advice, support, and
his many jokes made with us and at us. It’s been an honor to be
your SDP team. Thanks also to Professors Anderson and Moritz,
our evaluators; Fran Caron for his help with our orders; Professor
Hollot for his flexibility; and the ECE department for the funding.

Determining strikes and balls accurately is a core aspect
of baseball. However, umpires are inaccurate or biased,
and current technology solutions used in the MLB are
prohibitively expensive. AutoUmp is a self-contained pitch
calling solution installed in the home plate itself. It uses
optical sensors and real-time image processing
algorithms to detect strikes and balls.

Specification Goal Actual
Accuracy of

professional ump
85% accuracy in pitch

classification
83% accuracy in pitch
classification (n = 100)

Useable for batters
up to heights of 6’6”

Detect 70 in up,
30 in to each side

Detect 60 in up,
20 in to each side

Pitch speeds of 70
mph

Operate at 60 frames per
second

Operate at 60 frames per
second

Real time use <2 second delay <1 second delay
Battery life > length

of game 3 hour battery life 20 hour battery life
(2.2W operation)

Robust, self-
standing system

Self-enclosed, withstand
impacts of normal play

Self-enclosed, withstand
impacts of normal play

Enable varying
heights Control strike zone via app Control strike zone via app

Pitch Calling Comparison Matrix
Little League

Umpire
MLB

Umpire
Pitch FX
(MLB)

Our System
(AutoUmp)

Accuracy ~50% 85% 99.9% 83%
Cost $ $$$ $$$$ $

 Actual Strike Actual Ball
 AutoUmp

Calculated Strike 34 14
AutoUmp

Calculated Ball 3 49

AutoUmp employs two high-speed cameras which detect a pitch
as it moves across the plate. By tracking the trajectory of the
pitch, we can interpolate the precise pixel location of the ball as
it crosses the middle of the image, which represents a vector in
the 2-D strike zone plane. By finding the intersection of the
vectors obtained from both cameras, we are able to find the
location of the pitch and determine whether it is a ball or a strike.

Finding the intersection of the ball with the strike zone
plane in each camera

The precise pixel location found in the previous step from both
cameras can be used to find the location of the ball in the 2-D

strike-zone plane.

Problem

Cost

Enclosure Hardware

App/GUI

Image Processing

Development Production

Top layer of custom
designed processor PCB

Result of 100 pitches. Blue means correct call
was made; red indicates incorrect call

Item Cost
Initial

Prototype $ 380.26

PCBs and
PCB Parts $ 478.28

Enclosure $ 198.97

Misc. $ 185.69

Total Cost $1,243.20

Item Qty. Unit Cost
(Per 1000) Total

Optical Lens 2 $ 1.50 $ 3.00
10000mAh

Battery 1 $ 7.00 $ 7.00

Home plate 1 $ 61.99 $ 61.99
HC-05 Bluetooth

Module 1 $ 2.60 $ 2.60

Sapphire Crystal 2 $ 5.00 $ 10.00

Image Sensor 2 $ 2.11 $ 4.22

Processor 1 $ 9.75 $ 9.75
PCB Parts 1 $ 11.47 $ 11.47

XMOS PCB 1 $ 3.99 $ 3.99
Image Sensor

PCB 2 $ 3.86 $ 7.72

Camera Mounts 2 $ 4.07 $ 8.14

Total Cost $129.88

To meet the real-time demands of
our system, we chose a 2000MIPS,
16-core XMOS-XS2 processor,
designed explicitly for inter-thread
and inter-core communication. This
choice enabled us to pipeline our
algorithm and meet our throughput
requirement.

We designed a PCB for this
processor, complete with power
control, UART communication, and
an implementation of the camera
SCCB protocol. The camera
boards themselves were custom
designed, built for the Omnivision
OV7740 image sensor, which was
chosen for its ability to capture data
at 60fps at a 320x240 resolution –
a resolution high enough to meet
our requirements but low enough to
enable real-time image processing.

Bottom layer of custom
designed camera PCB

To perform effectively in a real world environment, the
system requires an enclosure that will protect the
electronics during normal gameplay, including being
stepped on, slid into, or with a bat. Holes in the plate allow
the camera to see through, while embedded sapphire
crystals protect the lenses from shock, dirt and sand. The
sapphire crystals were selected due to their ranking on the
Mohs hardness scale (9), which exceeds that of quartz (7),
a material typically found in sand. 3D printed mounts raise
the cameras to just beneath the crystals and are angled 15
degrees inward to allow each camera to see the entire
strike zone.

An aluminum backing fits snugly into the plate, and is
secured by Velcro straps to ensure system stability
throughout the game. These straps allow for the backing to
be removed for battery charging.

The app is the main interaction point
between our system and the user.
After connecting via Bluetooth to the
system, the user enters a screen
where a summary of the game is
displayed. The pitch count will be
automatically updated by the system
as it detects balls or strikes. Should
the user desire to make a change,
they can use the undo button or
increment any of the values through
the buttons provided.

The app also provides a pitch tracker
screen, where the user can view the
location of the pitch, as well as the
current pitch count. This screen is
designed to mimic the view provided
by the Pitch F/X technology used in
the MLB and that is seen on TV.

We begin our image processing with background
subtraction to detect motion, a process where the current
frame is subtracted from the previous frame. The resulting
image removes the background and sets objects in motion
as white pixels. This step is implemented in assembly to
run within the constraints necessary, and runs on the same
thread that collects the raw camera data.

The next step, denoise and object detection, is parallelized
across 6 cores, as it is by far the most computationally
expensive step. Pixels are examined and removed if less
than 3 of their 4-connected neighbors are white. Object
detection then begins by finding connected sets of white
pixels. The output is an array of objects, each modeled as
rectangles.

These arrays are passed to an object tracker core, which
unites the information from all 6 cores to track a pitch.
When the ball passes the middle of the screen, the strike
zone plane vector is calculated and a flag is set for that
camera. When both flags are set, the double camera
information is combined and the pitch is calculated. The
result is then sent to the app via Bluetooth.

