Preliminary Design Review

Team 1
Preliminary Design Review
October 12, 2016
The Team

Timothy Adams
CSE

Justin Marple
CSE

Jason Camiel
EE

Matt Barnes
EE

Advisor: Professor Wolf
The Problem

• In baseball, the strike zone is from the batter’s knees to halfway up the torso
• Determining strikes and balls, without a professional umpire, is difficult and inaccurate
• Strikes and balls are a core aspect of the game of baseball
• Incorrectly called pitches lead to angry players

Photo courtesy of nextlevelballplayer.com
Current Solutions

• Expensive
 • Multiple High Speed Camera Systems in Major League stadiums
• Inaccurate
 • Coach “umping” from behind mound
 • Catcher “umping”
 • Chair in Whiffle ball
Solution

Design a system contained in the home plate that automatically determines balls and strikes by utilizing sensors to determine the baseball’s location.
System Requirements

- Determine strikes with 15% error or less when pitch is within one ball length of edge of strike zone
- Accurately detect pitches up to 2 meters high, 1.5 meters wide
- Detect pitches at speeds up to 70 mph
- Battery lasts for 1 game (3 hours)
- Must give strike/ball feedback in real time (within 2-3 sec)
- Self-contained (no external components)
- Perform correctly in regular weather conditions (e.g. cloudy, sunny)
- Physically robust (withstand impacts of normal play)
Sensors

- Ultrasonic transmitters and transducer
 - Inexpensive
 - High susceptibility to noise
 - Inaccurate location data due to noise
- Radar
 - Expensive
 - High susceptibility to noise
 - High computational requirements
 - Would require many custom parts
- Stereoscopic cameras
 - Inexpensive
 - High data rate
2 Camera System

- 2 camera stereoscopic system using image processing to determine 3-dimensional location of ball above plate
- Utilize multiple frames of single pitch to determine path of the baseball through the plane of the strike zone
2 Camera System

- Cameras will point directly upwards from front, outer edges of home plate
- High frame rate will ensure at least two frames capture a ball traveling 70 mph at the bottom of the strike zone
Challenges

- Determine location of ball in 3D space using 2D images
- Locate ball within images given varying backgrounds
- Identify and ignore non-pitches (e.g. a bat, other thrown ball, or a player)
- High computational workload to process many frames per second
Design: Block Diagram (Physical)
Design: Block Diagram (Logical)

- Cameras
- Processor
 - Background subtraction
 - Ball location
 - Ball/strike decision
- App
 - Database
 - GUI
Design: Hardware selection

• Need cameras that can take pictures at 60fps @ ~480p
• Need a processor who can communicate with the cameras
 • ~2MB of external RAM will be required
 • Algorithms needs to take finish in (1 / fps) time
 • Ex. 1 / 60fps = 16.6ms before next frame.
Design: Camera selection
Design: Camera selection

- Camera
 - Omni-Vision has a large selection of cameras
 - Up to a couple MP
 - Many can go up to 120fps
Design: Processor selection

- Processors:
 - Regular CPU (single-core uProc)
 - Easy to program and test.
 - Easy to add RAM
 - Very hard to implement stereo-cameras
 - XMOS-based CPU (multi-core uProc)
 - Easy to program and test.
 - Reasonable to implement stereo-cameras
 - Difficult to add RAM
 - FPGA
 - Parallel execution is a big plus
 - Reasonable to implement stereo-cameras
 - PCB/Software might be harder to implement.
Estimated Costs

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA</td>
<td>1</td>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>Cameras</td>
<td>2</td>
<td>$30</td>
<td>$60</td>
</tr>
<tr>
<td>Power Supply</td>
<td>1</td>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>1</td>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
<td></td>
<td>$90</td>
</tr>
</tbody>
</table>
Distribution of responsibilities

- **Jason: Power supply/Bluetooth**
 - Establish stable power supply to all systems
 - Connect and configure Bluetooth module for processor
- **Matt: Camera control/synchronization**
 - Identify and implement hardware protocol
 - Ensure video feeds are linked frame by frame
- **Justin: Low level processing, TX/RX**
 - Implement image processing to identify frames that contain ball
 - Handle strict time requirements to match frame rate
- **Tim: High level processing, app (GUI/database)**
 - Implement image processing to locate ball in 3D space
 - Create mobile app that displays results of pitch analysis to user
Proposed MDR Deliverables

- Demonstration of image collection
 - Create two synchronized video feeds using cameras and collect with processor
- Demonstration of core image processing algorithm in MATLAB
 - Returns x, y position of ball above plate given two .MOV files