ALAN

Preliminary Design Review

Team 1 Preliminary Design Review October 12, 2016

Department of Electrical and Computer Engineering

Advisor: Professor Wolf

The Team

Timothy Adams CSE

Jason Camiel EE

Justin Marple CSE

Matt Barnes EE

Department of Electrical and Computer Engineering

Advisor: Professor Wolf

The Problem

- In baseball, the strike zone is from the batter's knees to halfway up the torso
- Determining strikes and balls, without a professional umpire, is difficult and inaccurate
- Strikes and balls are a core aspect of the game of baseball
- Incorrectly called pitches lead to angry players

Photo courtesy of nextlevelballplayer.com

Current Solutions

- Expensive
 - Multiple High Speed Camera Systems in Major League stadiums
- Inaccurate
 - Coach "umping" from behind mound
 - Catcher "umping"
 - Chair in Whiffle ball

UMassAmherst Solution

Design a system contained in the home plate that automatically determines balls and strikes by utilizing sensors to determine the baseball's location.

Photo courtesy of lpdpt.com

Department of Electrical and Computer Engineering

System Requirements

- Determine strikes with 15% error or less when pitch is within one ball length of edge of strike zone
- Accurately detect pitches up to 2 meters high, 1.5 meters wide
- Detect pitches at speeds up to 70 mph
- Battery lasts for 1 game (3 hours)
- Must give strike/ball feedback in real time (within 2-3 sec)
- Self-contained (no external components)
- Perform correctly in regular weather conditions (e.g. cloudy, sunny)
- Physically robust (withstand impacts of normal play)

Sensors

- Ultrasonic transmitters and transducer
 - Inexpensive
 - High susceptibility to noise
 - Inaccurate location data due to noise
- Radar
 - Expensive
 - High susceptibility to noise
 - High computational requirements
 - Would require many custom parts
- Stereoscopic cameras
 - Inexpensive
 - High data rate

UMassAmherst 2 Camera System

- 2 camera stereoscopic system using image processing to determine 3-dimensional location of ball above plate
- Utilize multiple frames of single pitch to determine path of the baseball through the plane of the strike zone

2 Camera System

- Cameras will point directly upwards from front, outer edges of home plate
- High frame rate will ensure at least two frames capture a ball traveling 70 mph at the bottom of the strike zone

UMassAmherst Challenges

- Determine location of ball in 3D space using 2D images
- Locate ball within images given varying backgrounds
- Identify and ignore non-pitches (e.g. a bat, other thrown ball, or a player)
- High computational workload to process many frames per second

Design: Block Diagram (Physical)

Design: Block Diagram (Logical)

Department of Electrical and Computer Engineering

Design: Hardware selection

- Need cameras that can take pictures at 60fps @ ~480p
- Need a processor who can communicate with the cameras
 - ~2MB of external RAM will be required
 - Algorithms needs to take finish in (1 / fps) time
 - Ex. 1 / 60 fps = 16.6 ms before next frame.

Design: Camera selection

Frames Seen vs. Frames Per Second for Different Fields of View

Department of Electrical and Computer Engineering

Design: Camera selection

- Camera
 - Omni-Vision has a large selection of cameras
 - Up to a couple MP
 - Many can go up to 120fps

Design: Processor selection

- Processors:
 - Regular CPU (single-core uProc)
 - Easy to program and test.
 - Easy to add RAM
 - Very hard to implement stereo-cameras
 - XMOS-based CPU (multi-core uProc)
 - Easy to program and test.
 - Reasonable to implement stereo-cameras
 - Difficult to add RAM
 - FPGA
 - Parallel execution is a big plus
 - Reasonable to implement stereo-cameras
 - PCB/Software might be harder to implement.

Estimated Costs

Unit	Quantity	Unit Cost	Cost
FPGA	1	\$10	\$10
Cameras	2	\$30	\$60
Power Supply	1	\$10	\$10
Bluetooth	1	\$10	\$10
Total Cost			\$90

Distribution of responsibilities

- Jason: Power supply/Bluetooth
 - Establish stable power supply to all systems
 - Connect and configure Bluetooth module for processor
- Matt: Camera control/synchronization
 - Identify and implement hardware protocol
 - Ensure video feeds are linked frame by frame
- Justin: Low level processing, TX/RX
 - Implement image processing to identify frames that contain ball
 - Handle strict time requirements to match frame rate
- Tim: High level processing, app (GUI/database)
 - Implement image processing to locate ball in 3D space
 - Create mobile app that displays results of pitch analysis to user

Proposed MDR Deliverables

- Demonstration of image collection
 - Create two synchronized video feeds using cameras and collect with processor
- Demonstration of core image processing algorithm in MATLAB
 - Returns x, y position of ball above plate given two .MOV files