
 
Abstract — Determining strikes and balls accurately and 

efficiently is a core aspect of baseball, but a way to do so has not 
yet emerged for little-league and pick-up games. Umpires are 
inaccurate or biased, and current technology solutions used in 
the MLB are prohibitively expensive. We introduce AutoUmp, a 
self-contained pitch determination solution installed in the home 
plate itself. AutoUmp uses two cameras, XMOS processors, and 
real-time image processing algorithms to detect strikes and balls. 
Currently, we have demonstrated our core image processing 
algorithm in MATLAB, and can detect motion in real-time on 
our prototype. Future work will focus on implementing the 
algorithm in C and developing a hardware prototype capable of 
meeting our specifications. 

I. INTRODUCTION 

ETERMINING strikes and balls accurately and efficiently is 
a core aspect of the game of baseball, yet doing so 

without a professional umpire is difficult and inaccurate. In 
order to do so, an umpire must decide if a pitch has passed 
through the strike zone, a variable volume that consists of the 
space above home plate and between the batter’s knees and 
halfway up their torso. Even in little league games, pitches can 
easily be thrown in the region of 70 miles per hour (mph), 
reaching the home plate in 0.65 seconds [1]. This difficulty 
directly correlates to incorrect calls, which can lead to 
significant frustration from players, coaches, and spectators 
alike, especially in a close game. In the MLB, where salaries 
for umpires range between $120,000 and $350,000 [2], 15% 
of strikes are called as balls and 13.2% of balls are called as 
strikes [3]. Extrapolating these statistics to little league games 
that are overseen by amateur umpires, one can imagine the 
extent to which games can be affected by incorrect calls. 
 

Though the challenges associated with accurate pitch 
calling are widely apparent, little has been done to seek to 
resolve the problem. The MLB has adopted PITCHf/x 
technology to augment calls made by umpires, which is 
capable of tracking the entire trajectory of each pitch [4]. 
However, the technology is extremely expensive and only 
installed in MLB baseball stations. It consists of two cameras 
installed in the stands above home plate and first base, which 
capture approximately 20 images of the pitch during its flight 
and feed this information to a high-speed computer to 
determine the pitch’s 3-D trajectory through space [5]. The 
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expensive and time-consuming installation costs prohibit 
similar technology from being widely adopted anywhere 
except the MLB level. Other solutions frequently employed, 
such as having a catcher or a coach act as umpire, do little-to-
nothing to solve the inherent problem and can introduce bias 
into the calls. 

 
Therefore, there still remains a need for a portable, 

unbiased, and accurate pitch detection solution that can be 
used effectively by little-league teams and pick-up games. 
This is the niche that AutoUmp seeks to fill.  

 
Requirement Specification 

Meet or exceed accuracy 
of human umpire 

Determine strikes with 15% error 
or less when pitch is within one 
ball length of edge of strike zone 

Accurately detect pitches 
for the users up to 
heights of 6’ 6”  

Detect pitches up to 2 meters high 
and 0.75 meters to either side of 
plate 

Detect pitches at speeds 
up to 70mph 

Cameras and image processing 
algorithm must run at 60fps 

See pitch in at least 2 
frames 

At 60fps, field of view must 
exceed 93 degrees 

Real-time use Provide pitch determination 
within 3 seconds of pitch passing 
plate 

Little-to-no setup 
required 

Self-contained system 

Robust system Perform consistently in cloudy 
and sunny conditions; system can 
withstand impacts of normal play 

Table 1. List of System Requirements and Specifications. 
 
AutoUmp will consist of a self-contained, battery 

operated system stored in the home plate itself, with results 
sent to the user via LEDs in the plate and an Android app 
connected via Bluetooth. The user of the app will be able to 
input the batter height for an accurate determination of the 
strike zone, see the calls the system makes, and edit any calls 
if needed. Inputting the height of the batter provides a quick, 
easy way for the system to determine the height of the top and 
bottom of the strike zone by using data to find an 
approximation of knee and mid-torso height of people. 

 
Through our team’s own experience in baseball and 

market research, along with the feedback from other college-
level baseball players, we have determined the requirements 
and specifications needed for effective implementation, 
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outlined in Table 1. As our target market is youth to young 
adult baseball and wiffleball, the heights of players are far 
below our 6 feet 6 inches requirement, and it is unlikely that 
any ball will be thrown higher than that. It is fairly routine to 
see balls in the 50-70mph range in youth baseball; a frame rate 
of 60 frames per second (fps) enables us to effectively capture 
pitches at this speed without requiring a fisheye lens, 
significantly increasing the ease of implementing an accurate 
algorithm. This system is designed to substitute for an umpire, 
so the pitch call needs to be made quickly enough that play is 
not significantly slowed in comparison with a human umpire. 
Finally, it is a core part of baseball to step on the home plate, 
so the system must be robust to withstand such impacts. 

II. OVERVIEW 

To create a self-contained system like the one described, 
we will embed two cameras into the home plate, protecting 
them with a polycarbonate material. We monitor each camera 
for a ball flying overhead and, if seen, determine the point at 
which it crosses the strike zone. For our purposes, we model 
the strike zone as a plane, rather than a volume. Using just one 
camera does not provide enough information for our purposes, 
as each pixel location corresponds to a line in 2-D space where 
the ball might be. Using two cameras, however, allows us to 
find the intersection between these two lines and calculate 
both the x- and y-coordinates of the ball as it passes through 
the strike zone plane.  

 
We considered several other sensing technologies, 

including radar and ultrasound. We found radar was extremely 
noisy and would require a prohibitively large antenna to 
achieve the wavelengths required to identify a baseball. 
Ultrasound seemed promising and afforded the potential of 
extremely cheap sensors, but also suffered from significant 
noise. Due to the maturity of optical sensors and the ability to 
easily detect moving objects via background subtraction, we 
opted to stay with image sensors. 

 
Each camera must be capable of capturing data at 60 

frames per second with a 320x240 resolution and a 95-degree 
field of view. These values enable us to see a ball in at least 
two frames, which is a requirement of our image processing 
algorithm while also reliably distinguishing a ball from stray 
noise in the image.  

 
The hardware that interfaces with the cameras and runs 

the image processing algorithm must be small enough to fit 
inside the plate and fast enough to both read 4.6MB/sec of 
data from the cameras (320*240 pixels per frame, at 60 frames 
per second, where each pixel is one byte) and execute our 
image processing algorithm. We chose the XMOS 500Mhz [6] 
16-core processor for this purpose. We had originally 
considered using an FPGA for the same purpose, but decided 
on the XMOS due to its ability to allow us to write all of our 
algorithms sequentially in C rather than explicitly in parallel 
for the FPGA, aiding greatly in reducing code complexity and 
testing. Figure 1 shows the relationships and protocols used 

between the different hardware blocks. The cameras will send 
image data to the XMOS processors. Each XMOS processor 
will perform sufficient image processing on the camera data to 
identify and locate a ball flying through the image (see Cores 
1-4 in Fig. 2). To accomplish this the processors will perform 
background subtraction on consecutive images to identify 
objects in motion (Core 2). The result will be denoised (Core 
3) and a flood fill algorithm will detect the ball (Core 4). The 
ball’s location from each camera will then be sent to the 
master processor, which will combine the information to 
determine whether the pitch crossed the strike-zone The 
results will be displayed via LEDs on the plate itself, and sent 
to the user via Bluetooth to an Android app 

 
Serving as the primary point of interaction with the user, 

our app will display the current pitch count and general game 
information such as the score and inning number. Although 
both Android and iOS are equally acceptable options, we 
opted to develop and Android app due to a majority of the 
team having access to one and overall larger market share.  

 

 
Fig. 1. Hardware Block Diagram. 

 

 
Fig. 2. Software Block Diagram. 

 

A. Cameras 

Capturing and utilizing data from two cameras is in many 
ways the central component of our project. Choosing the 
correct camera sensors and lenses requires balancing a number 
of camera properties as well as cost. In order for our algorithm 
to work correctly, we need to capture the ball in at least two 



frames and be able to see the ball up to a height of two meters. 
Increasing the framerate at which we capture will increase the 
number of frames where we will see the ball, and increasing 
the resolution increases our capability to see the ball and 
distinguish it from other noise. However, higher resolution 
and framerate will result in higher computation requirements, 
as our image-processing algorithm will need to operate on a 
significantly greater number of pixels. Another property that 
can be manipulated is the field of view, which describes the 
angle of the image cone that the camera can see. Increasing 
the field of view significantly can result in distortion of the 
image, which can affect the accuracy of our calculations. The 
field of view is entirely determined by the lenses we choose. 

 
Most available camera sensors support up to 60fps. Using 

this value as a reference, we calculated that a field of view of 
95-110 degrees will allow us to meet our >2 frames 
requirement (see Table 1).  Furthermore, a resolution of 
320x240 will render the ball with 25-30 pixels, even 2 meters 
above the plate, providing enough information to identify it 
distinctly as a ball.  

 
We chose to model the strike zone as a plane in order to 

only use two cameras and to allow for the algorithm to run fast 
enough in order to process images faster than they are being 
recorded. Therefore it is theoretically possible for a ball to 
“hook” around the strike zone plane and intersect the volume 
above the home plate. In practice this is highly unlikely and 
most umpires would still call it a ball despite it crossing within 
the volume of the plate. 

 

B. XMOS Processor and Camera Communication 

In order to read our raw data from our camera sensors fast 
enough, we require an efficient hardware interface. This was 
one of the reasons why we chose the XMOS 500Mhz 16-core 
processor. This processor functions similar to an FPGA, in 
that the hardware interface can be written in software, but 
unlike an FPGA, the code can be written sequentially in C. In 
our case, the hardware interface will need to be a databus to 
the Omnivision cameras.  Each camera has a HREF, VSYNC, 
PCLK, 8 data lines, and a SCCB line.  HREF goes high every 
time a row starts, VSYNC goes high at the beginning of each 
image and PCLK goes high every time a pixel is set.  SCCB is 
a protocol similar to I2C, which allows settings in the camera 
sensor to be set.   

 
On the XMOS processor, each of these lines is hooked up 

to a 1-bit port, besides the data lines which are connected to an 
8-bit port. A “port” in XMOS terms is a series of digital inputs 
that can be sampled at once. For instance, an 8-bit port can 
sample 8 pins on a single clock cycle, making it ideal for wide 
buses. Each port can also be sampled and buffered 
automatically using an input clock. So when sampling the 
pixel clock (PCLK) that can be used to tell the hardware when 
to sample the data lines. This makes efficient use of the 
hardware and only requires software to save the buffered 

samples to RAM when the buffer fills up. 

C. Image Processing 

The image processing block is the main block of the 
project, and is represented by Fig. 2. This block is run entirely 
on the two XMOS microprocessors that are each connected to 
a camera, and will be programmed in XC, a variant of C that is 
specific to XMOS. Each camera will be recording at 60 frames 
per second. Because a ball may fly through the field of view of 
the cameras at any time, each frame must be processed to 
determine if a ball has passed through the camera. 
Furthermore, each frame must be processed before the next 
frame is read, resulting in a 16.67ms time window. If a ball is 
found in the frame, then the ball’s location is passed to the 
“Centroid Connect” and “Plot Zone” functions to determine 
where in 3-D space the ball passed through plane of the strike 
zone. Here, our time-constraint is much more lax, as the user 
can accept up to a 2-3 second delay in the pitch determination. 

 
To meet our 1/60ms time requirement for ball detection, 

our algorithm is highly parallelized, where each method of our 
algorithm runs on a separate core of our XMOS 
microprocessor. To start, we perform background subtraction 
and thresholding on the current frame and the previous frame, 
creating a new image that has white pixels only where an 
object has moved since the last frame. This new image is 
passed through a denoising filter to eliminate stray noise or 
camera malfunctions that may be incorrectly labeled as 
objects.  

 
The denoised image is then passed to an object detection 

function, which has two main components. First, a flood-fill 
algorithm identifies connected regions of white pixels, giving 
each a unique ID and summary information of each in a table. 
Second, every object ID that is connected to the edge of the 
image is removed. We perform this second step because the 
only object we care about – the ball – is also the only one that 
will be in flight. As our cameras are pointing straight up, any 
moving object not in flight must be connected to the edge of 
the image. This second step then allows us to identify the ball 
rather than falsely detecting a player’s hand, the bat, etc.  

 
Because of the nature of the background subtraction, the 

images we will operate on will have two “balls” in them – 
each representing the location of the ball in a different frame. 
We can use this fact to our advantage to greatly simplify our 
calculations by connecting the centers of these two balls and 
finding the point at which they cross the middle of the image. 
There will be at least one background subtracted image, for 
each camera and each pitch, that will contain two baseballs. 
By connecting the center of each of these baseball “objects” 
we can interpolate and find the intersection of this line with 
line of pixels that represents the area (plane) directly over the 
cameras. Rather than attempt to calculate the 3-D location of a 
ball and seeing if it passes through the volume of the strike 
zone, we model the strike zone as a plane, and represent the 
line of pixels that make up the middle of the image as that 



plane. This allows us to convert a 3-D problem into a 2-D 
problem. The last step of our algorithm takes the point in each 
image where the ball passes through this plane, and uses 
simple geometry and the properties of the camera such as field 
of view to calculate the x- and y-location of the ball in the 
plane of the strike zone (See Fig. 5a and Fig. 5b). From here, it 
is a simple matter to match the location of the ball with the 
strike zone computed from the batter’s height. 

 

 
Fig. 5a. Using pixel location to determine ball location. Each 
line represents the possible location of an object given its 
location in a particular pixel of the image. The field of view 
affects how far apart these lines are spread. This simplified 
drawing uses only 50 pixels – our actual cameras use 240, 
allowing for a more precise calculation. 
 

 
Fig. 5b. Once the center of the ball has been found in each 
image, we can use the pixel location to triangulate the ball’s 
flight through the plane of the strike zone.  
 

As the majority of this block is written in C, it utilizes all of 
the work conducted in those classes which have required us to 
program in C. Furthermore, team member Tim Adams took 
Image Processing this past semester, and has incorporated 
what he has learned into this section as well. Moving forward, 
however, we may need to study more image processing 
techniques to account for lens distortion or other errors that 
may affect the accuracy of our calculations.  

We have already designed multiple experiments to test 
this block. Our most efficient and accurate experiment 
proceeds as follows: identical cameras are placed at a fixed 
distance apart on the ground and are pointed directly up. A 
strike zone and axis are drawn on a board or wall. One person 
throws multiple baseballs at the wall or board so that the 
pitches travel over the cameras, and a separate person marks 
the location that the ball strikes the board or wall. These 
positions are taken to be the points at which the ball crossed 
the strike zone plane at the front of the plate. When these 
videos are run through our MATLAB algorithm, the measured 
positions are compared to the results of the image-processing 
block. By repeating this type of experiment several times, we 
can develop a suite of tests that test all of our most difficult 
edge cases, as well as more typical pitches that will be seen in 
practice. 

 

D. Enclosure 

For the home plate system to perform effectively in a real-
world game environment, we require a strong enclosure that 
will protect our electronics from damage. Normal game play 
will see the plate being stepped on or slid into by a player and 
hit by a bat. 

 
Using AutoCAD, we were able to draft plans for 

placement of the hardware. The standard 1.5-inch depth plate 
provides plenty of space for extra battery storage or any 
unforeseen corrections to our hardware. Fig. 5 shows we could 
stack 3 batteries on top of each other and effectively triple our 
power storage, while still comfortably fitting within our space 
constraints. 

 
In addition to fitting our hardware, our enclosure must 

provide suitable support to withstand normal gameplay. Fig. 4 
shows the top view of our hardware placement, and provides 
insight into how we can support the enclosure. Using 
continuous cross braces will hold the integrity of the plate 
while minimizing any flex that could damage the components 
held within.  Areas of white free space show good places for 
bracing, and as can be seen from Fig. 4, there is a significant 
amount of free space available.  
  



 

  
 
Fig. 4. Side view of enclosure  and components inside.  Design leaves significant amount of empty space  if more battery storage 
is required.

 

 
Fig. 5. Top view of enclosure and components inside. 

 
The backside of the plate will be sealed with one 

continuous piece of material, most likely sheet metal to help 
dissipate heat and provide structural support. This will 
complete the prism, strengthening the entire structure. In order 
to enable the camera lens to see the pitch, the top of our plate 
must be compromised. Thin sheets of a polycarbonate will 
weatherproof and shock proof the lenses while keeping optical 
distortion at a minimum. The polycarbonate material will be 
layered both under the plane of the top of the plate and above 
the plane of the top of the plate. This will allow for backup 
protection in case one fails. To ensure waterproofing around 
the entire enclosure, all joints will be caulked or sealed with 
rubber cement. 

E. App 

The app is the main interaction point between our system 
and the user. It will be the only place the user can interrupt 
and change calls, and in tandem with LEDs on the plate, will 
indicate the called pitches provided by the system. Developed 
for Android using Android Studio [7], the app will allow users 
to start a new game and pair with their plate via Bluetooth. 
After doing so, the main game screen appears, where the user 
can view and update the current pitch count, score, and inning 
(see Fig. 6). All labels double as buttons which increment their 
respective values, rolling over to 0 if they exceed the 
maximum possible value (i.e. 3 for outs or strikes and 4 for 
balls). An edit screen will also be available to edit score or 
inning number if these values are accidently incremented. 
 

We require two-way communication between the app and 
the home plate for complete functionality. The home plate will 
send pitch information to the app, along with its current 

reading of general game information such as current inning, 
number of outs, and score. The app will send the home plate 
any updated information the user might provide about general 
game information or the current pitch count, as well as the 
current batter’s height.  
 

So far, we have sketched the basic UI interface, but we 
still need to implement the core functionality and Bluetooth 
pairing. To accomplish this, we will build on our experience 
using Java in our previous courses. Namely, we need to learn 
how to interface our app with a Bluetooth device, and 
seamlessly update the pitch count based on new information 
from the paired device. 

 
Our app can be tested independently of the rest of the 

system by manually inputting test cases via the console to our 
app. The test cases will be formatted in the same way as the 
data received via the Bluetooth interface from the app, and 
will allow us to verify that all user interface components work 
successfully. After communication between the 
microprocessors and app is established, the same test cases 
can be sent from the microprocessor.  

 
 

Fig 6. Main page of app. Each label also acts as a button 
that can increment its given number  
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Fig. 7. Gantt Chart of CDR Deliverables.
. 

III. PROJECT MANAGEMENT 

Promised Delivered? 
Demonstration of 
image processing 
algorithm (MATLAB) 

Yes: given two .MOV files, returns 
pitch determination 

Demonstration of 
image collection 

Yes: prototype system collects live 
video from two cameras and lights 
up sections 3x3 LED grid 
corresponding to location detected 
motion in image 

Table 2. Promised MDR Deliverables. 
 

Our team successfully accomplished both of our MDR 
deliverables as outlined in Table 2. As promised, we 
completed our core image processing algorithm in MATLAB, 
demonstrating that our basic method is sound and achievable. 
We recorded videos using our pre-described testing and then 
demonstrated that given two video files representing the 
different cameras, our MATLAB code could take, perform our 
entire algorithm and output the location of the pitch in 2D 
space where it crossed the plate. We also developed a 
prototype that not only can collect image data, but can process 
that data in real time to detect motion, displaying the first step 
of our overall image processing algorithm.  

 
Moving forward towards CDR, we need to design and 

ship out a PCB for our cameras and microprocessors. Our 
current prototype is only capable of recording at 30 frames per 
second, and lacks the field of view required to meet our 
specifications, and so we have ordered an entire suite of new 
parts to build a fully functional prototype. In the first few 
weeks of the semester, we will combine these parts and our 
PCB to create a prototype. Once our hardware is complete, we 
can begin building our enclosure.  

 
Concurrent to this work, we can develop our software 

components, both for our core image processing algorithm and 
the Android app. The image processing algorithm will first be 
ported over to C, and then, once it has gone through an initial 
round of testing, will be translated to XC, the variant of C that 
runs on our XMOS microprocessors. The app will be 

developed relatively independently of the rest of the system, 
establishing Bluetooth connectivity in Mid-February. The 
Gantt Chart (Fig, 7) provides an overview of our plan. 

 
Our team dynamics have been quite good, demonstrated 

by our ability to continue to work together and remain in good 
spirits despite several setbacks this past semester. Team 
management was made more difficult throughout the majority 
of the semester, as Justin was in New Zealand studying abroad 
until mid-November. As a result, we met weekly with the four 
of us at a time when we were all available, and then the three 
of us in Amherst met weekly with our advisor Professor Wolf, 
recording and updating Justin after each meeting.  Most of our 
communication has occurred over Facebook Messenger, 
which has allowed us to both message and conference call 
with the entire team as Justin has been abroad.  

 
Throughout the fall semester, much of the work we have 

done has been done collaboratively, with team members often 
overlapping in responsibilities and taking turns driving the 
project forward at different points in the semester. Much of the 
work this semester involved determining the specifications 
necessary for our project, which was truly a joint effort. Justin 
has taken the lead in interfacing with the cameras and 
designing the PCB, and will continue to lead in those 
capacities. Matt and Tim have collaborated extensively on 
developing the overall algorithm in MATLAB. Moving 
forward, Tim will take the lead in developing the algorithm in 
C, and work with Justin to translate it to XC. Jason and Matt 
have worked together to develop a large number of test cases 
that will prove useful in testing our algorithm. Jason has 
designed the enclosure in AutoCAD and led the way in 
tracking down the surprisingly difficult-to-find camera lenses 
and other parts that are required for us to meet specification.  

IV. CONCLUSION  

Much work has been completed at this stage of our 
project. At this point, we have successfully demonstrated our 
image processing algorithm, established image collection and 
real time image processing on a prototype, and ordered all 
parts necessary to create our final prototype. We have 
collected a variety of test data that will allow us to test our 
algorithm, built a user interface for our app, and begun to 
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design an enclosure that will protect our system from normal 
game-play.  

Moving forward, we will design and build our PCB and 
construct our final prototype. Concurrently, we will implement 
and test our algorithm in C, begin to build an enclosure, and 
develop our app. We anticipate that the most significant 
difficulties will come from the hardware design of our 
prototype as our PCB is fairly complex and may require a 
couple of tries to be completely successful. We will buy 
ourselves as much time as possible by developing and testing 
the algorithm as much as possible in C so that our software 
and logic is essentially completed by the time our hardware is 
ready. We can also learn how to pair our app to Bluetooth and 
finish the app entirely independent of the prototype being 
completed.  
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