

Abstract — Determining strikes and balls accurately and

efficiently is a core aspect of baseball, but a way to do so has not
yet emerged for little-league and pick-up games. Umpires are
inaccurate or biased, and current technology solutions used in
the MLB are prohibitively expensive. We introduce AutoUmp, a
self-contained pitch determination solution installed in the home
plate itself. AutoUmp uses two cameras, XMOS processors, and
real-time image processing algorithms to detect strikes and balls.
Currently, we have demonstrated our core image processing
algorithm in MATLAB, and can detect motion in real-time on
our prototype. Future work will focus on implementing the
algorithm in C and developing a hardware prototype capable of
meeting our specifications.

I. INTRODUCTION

ETERMINING strikes and balls accurately and efficiently is
a core aspect of the game of baseball, yet doing so

without a professional umpire is difficult and inaccurate. In
order to do so, an umpire must decide if a pitch has passed
through the strike zone, a variable volume that consists of the
space above home plate and between the batter’s knees and
halfway up their torso. Even in little league games, pitches can
easily be thrown in the region of 70 miles per hour (mph),
reaching the home plate in 0.65 seconds [1]. This difficulty
directly correlates to incorrect calls, which can lead to
significant frustration from players, coaches, and spectators
alike, especially in a close game. In the MLB, where salaries
for umpires range between $120,000 and $350,000 [2], 15%
of strikes are called as balls and 13.2% of balls are called as
strikes [3]. Extrapolating these statistics to little league games
that are overseen by amateur umpires, one can imagine the
extent to which games can be affected by incorrect calls.

Though the challenges associated with accurate pitch
calling are widely apparent, little has been done to seek to
resolve the problem. The MLB has adopted PITCHf/x
technology to augment calls made by umpires, which is
capable of tracking the entire trajectory of each pitch [4].
However, the technology is extremely expensive and only
installed in MLB baseball stations. It consists of two cameras
installed in the stands above home plate and first base, which
capture approximately 20 images of the pitch during its flight
and feed this information to a high-speed computer to
determine the pitch’s 3-D trajectory through space [5]. The

T. Adams, author from Arlington, MA (email: tbadams@umass.edu).
M. Barnes, author from Southborough, MA (email: mebarnes@umass.edu).
J. Camiel, author from Framingham, MA (email: jcamiel@umass.edu).
J. Marple, author from Pepperell, MA (email: jmarple@umass.edu).

expensive and time-consuming installation costs prohibit
similar technology from being widely adopted anywhere
except the MLB level. Other solutions frequently employed,
such as having a catcher or a coach act as umpire, do little-to-
nothing to solve the inherent problem and can introduce bias
into the calls.

Therefore, there still remains a need for a portable,

unbiased, and accurate pitch detection solution that can be
used effectively by little-league teams and pick-up games.
This is the niche that AutoUmp seeks to fill.

Requirement Specification

Meet or exceed accuracy
of human umpire

Determine strikes with 15% error
or less when pitch is within one
ball length of edge of strike zone

Accurately detect pitches
for the users up to
heights of 6’ 6”

Detect pitches up to 2 meters high
and 0.75 meters to either side of
plate

Detect pitches at speeds
up to 70mph

Cameras and image processing
algorithm must run at 60fps

See pitch in at least 2
frames

At 60fps, field of view must
exceed 93 degrees

Real-time use Provide pitch determination
within 3 seconds of pitch passing
plate

Little-to-no setup
required

Self-contained system

Robust system Perform consistently in cloudy
and sunny conditions; system can
withstand impacts of normal play

Table 1. List of System Requirements and Specifications.

AutoUmp will consist of a self-contained, battery

operated system stored in the home plate itself, with results
sent to the user via LEDs in the plate and an Android app
connected via Bluetooth. The user of the app will be able to
input the batter height for an accurate determination of the
strike zone, see the calls the system makes, and edit any calls
if needed. Inputting the height of the batter provides a quick,
easy way for the system to determine the height of the top and
bottom of the strike zone by using data to find an
approximation of knee and mid-torso height of people.

Through our team’s own experience in baseball and

market research, along with the feedback from other college-
level baseball players, we have determined the requirements
and specifications needed for effective implementation,

AutoUmp

Timothy Adams, CSE; Matthew Barnes, EE; Jason Camiel, EE; Justin Marple, CSE

D

outlined in Table 1. As our target market is youth to young
adult baseball and wiffleball, the heights of players are far
below our 6 feet 6 inches requirement, and it is unlikely that
any ball will be thrown higher than that. It is fairly routine to
see balls in the 50-70mph range in youth baseball; a frame rate
of 60 frames per second (fps) enables us to effectively capture
pitches at this speed without requiring a fisheye lens,
significantly increasing the ease of implementing an accurate
algorithm. This system is designed to substitute for an umpire,
so the pitch call needs to be made quickly enough that play is
not significantly slowed in comparison with a human umpire.
Finally, it is a core part of baseball to step on the home plate,
so the system must be robust to withstand such impacts.

II. OVERVIEW

To create a self-contained system like the one described,
we will embed two cameras into the home plate, protecting
them with a polycarbonate material. We monitor each camera
for a ball flying overhead and, if seen, determine the point at
which it crosses the strike zone. For our purposes, we model
the strike zone as a plane, rather than a volume. Using just one
camera does not provide enough information for our purposes,
as each pixel location corresponds to a line in 2-D space where
the ball might be. Using two cameras, however, allows us to
find the intersection between these two lines and calculate
both the x- and y-coordinates of the ball as it passes through
the strike zone plane.

We considered several other sensing technologies,

including radar and ultrasound. We found radar was extremely
noisy and would require a prohibitively large antenna to
achieve the wavelengths required to identify a baseball.
Ultrasound seemed promising and afforded the potential of
extremely cheap sensors, but also suffered from significant
noise. Due to the maturity of optical sensors and the ability to
easily detect moving objects via background subtraction, we
opted to stay with image sensors.

Each camera must be capable of capturing data at 60

frames per second with a 320x240 resolution and a 95-degree
field of view. These values enable us to see a ball in at least
two frames, which is a requirement of our image processing
algorithm while also reliably distinguishing a ball from stray
noise in the image.

The hardware that interfaces with the cameras and runs

the image processing algorithm must be small enough to fit
inside the plate and fast enough to both read 4.6MB/sec of
data from the cameras (320*240 pixels per frame, at 60 frames
per second, where each pixel is one byte) and execute our
image processing algorithm. We chose the XMOS 500Mhz [6]
16-core processor for this purpose. We had originally
considered using an FPGA for the same purpose, but decided
on the XMOS due to its ability to allow us to write all of our
algorithms sequentially in C rather than explicitly in parallel
for the FPGA, aiding greatly in reducing code complexity and
testing. Figure 1 shows the relationships and protocols used

between the different hardware blocks. The cameras will send
image data to the XMOS processors. Each XMOS processor
will perform sufficient image processing on the camera data to
identify and locate a ball flying through the image (see Cores
1-4 in Fig. 2). To accomplish this the processors will perform
background subtraction on consecutive images to identify
objects in motion (Core 2). The result will be denoised (Core
3) and a flood fill algorithm will detect the ball (Core 4). The
ball’s location from each camera will then be sent to the
master processor, which will combine the information to
determine whether the pitch crossed the strike-zone The
results will be displayed via LEDs on the plate itself, and sent
to the user via Bluetooth to an Android app

Serving as the primary point of interaction with the user,

our app will display the current pitch count and general game
information such as the score and inning number. Although
both Android and iOS are equally acceptable options, we
opted to develop and Android app due to a majority of the
team having access to one and overall larger market share.

Fig. 1. Hardware Block Diagram.

Fig. 2. Software Block Diagram.

A. Cameras

Capturing and utilizing data from two cameras is in many
ways the central component of our project. Choosing the
correct camera sensors and lenses requires balancing a number
of camera properties as well as cost. In order for our algorithm
to work correctly, we need to capture the ball in at least two

frames and be able to see the ball up to a height of two meters.
Increasing the framerate at which we capture will increase the
number of frames where we will see the ball, and increasing
the resolution increases our capability to see the ball and
distinguish it from other noise. However, higher resolution
and framerate will result in higher computation requirements,
as our image-processing algorithm will need to operate on a
significantly greater number of pixels. Another property that
can be manipulated is the field of view, which describes the
angle of the image cone that the camera can see. Increasing
the field of view significantly can result in distortion of the
image, which can affect the accuracy of our calculations. The
field of view is entirely determined by the lenses we choose.

Most available camera sensors support up to 60fps. Using

this value as a reference, we calculated that a field of view of
95-110 degrees will allow us to meet our >2 frames
requirement (see Table 1). Furthermore, a resolution of
320x240 will render the ball with 25-30 pixels, even 2 meters
above the plate, providing enough information to identify it
distinctly as a ball.

We chose to model the strike zone as a plane in order to

only use two cameras and to allow for the algorithm to run fast
enough in order to process images faster than they are being
recorded. Therefore it is theoretically possible for a ball to
“hook” around the strike zone plane and intersect the volume
above the home plate. In practice this is highly unlikely and
most umpires would still call it a ball despite it crossing within
the volume of the plate.

B. XMOS Processor and Camera Communication

In order to read our raw data from our camera sensors fast
enough, we require an efficient hardware interface. This was
one of the reasons why we chose the XMOS 500Mhz 16-core
processor. This processor functions similar to an FPGA, in
that the hardware interface can be written in software, but
unlike an FPGA, the code can be written sequentially in C. In
our case, the hardware interface will need to be a databus to
the Omnivision cameras. Each camera has a HREF, VSYNC,
PCLK, 8 data lines, and a SCCB line. HREF goes high every
time a row starts, VSYNC goes high at the beginning of each
image and PCLK goes high every time a pixel is set. SCCB is
a protocol similar to I2C, which allows settings in the camera
sensor to be set.

On the XMOS processor, each of these lines is hooked up

to a 1-bit port, besides the data lines which are connected to an
8-bit port. A “port” in XMOS terms is a series of digital inputs
that can be sampled at once. For instance, an 8-bit port can
sample 8 pins on a single clock cycle, making it ideal for wide
buses. Each port can also be sampled and buffered
automatically using an input clock. So when sampling the
pixel clock (PCLK) that can be used to tell the hardware when
to sample the data lines. This makes efficient use of the
hardware and only requires software to save the buffered

samples to RAM when the buffer fills up.

C. Image Processing

The image processing block is the main block of the
project, and is represented by Fig. 2. This block is run entirely
on the two XMOS microprocessors that are each connected to
a camera, and will be programmed in XC, a variant of C that is
specific to XMOS. Each camera will be recording at 60 frames
per second. Because a ball may fly through the field of view of
the cameras at any time, each frame must be processed to
determine if a ball has passed through the camera.
Furthermore, each frame must be processed before the next
frame is read, resulting in a 16.67ms time window. If a ball is
found in the frame, then the ball’s location is passed to the
“Centroid Connect” and “Plot Zone” functions to determine
where in 3-D space the ball passed through plane of the strike
zone. Here, our time-constraint is much more lax, as the user
can accept up to a 2-3 second delay in the pitch determination.

To meet our 1/60ms time requirement for ball detection,

our algorithm is highly parallelized, where each method of our
algorithm runs on a separate core of our XMOS
microprocessor. To start, we perform background subtraction
and thresholding on the current frame and the previous frame,
creating a new image that has white pixels only where an
object has moved since the last frame. This new image is
passed through a denoising filter to eliminate stray noise or
camera malfunctions that may be incorrectly labeled as
objects.

The denoised image is then passed to an object detection

function, which has two main components. First, a flood-fill
algorithm identifies connected regions of white pixels, giving
each a unique ID and summary information of each in a table.
Second, every object ID that is connected to the edge of the
image is removed. We perform this second step because the
only object we care about – the ball – is also the only one that
will be in flight. As our cameras are pointing straight up, any
moving object not in flight must be connected to the edge of
the image. This second step then allows us to identify the ball
rather than falsely detecting a player’s hand, the bat, etc.

Because of the nature of the background subtraction, the

images we will operate on will have two “balls” in them –
each representing the location of the ball in a different frame.
We can use this fact to our advantage to greatly simplify our
calculations by connecting the centers of these two balls and
finding the point at which they cross the middle of the image.
There will be at least one background subtracted image, for
each camera and each pitch, that will contain two baseballs.
By connecting the center of each of these baseball “objects”
we can interpolate and find the intersection of this line with
line of pixels that represents the area (plane) directly over the
cameras. Rather than attempt to calculate the 3-D location of a
ball and seeing if it passes through the volume of the strike
zone, we model the strike zone as a plane, and represent the
line of pixels that make up the middle of the image as that

plane. This allows us to convert a 3-D problem into a 2-D
problem. The last step of our algorithm takes the point in each
image where the ball passes through this plane, and uses
simple geometry and the properties of the camera such as field
of view to calculate the x- and y-location of the ball in the
plane of the strike zone (See Fig. 5a and Fig. 5b). From here, it
is a simple matter to match the location of the ball with the
strike zone computed from the batter’s height.

Fig. 5a. Using pixel location to determine ball location. Each
line represents the possible location of an object given its
location in a particular pixel of the image. The field of view
affects how far apart these lines are spread. This simplified
drawing uses only 50 pixels – our actual cameras use 240,
allowing for a more precise calculation.

Fig. 5b. Once the center of the ball has been found in each
image, we can use the pixel location to triangulate the ball’s
flight through the plane of the strike zone.

As the majority of this block is written in C, it utilizes all of
the work conducted in those classes which have required us to
program in C. Furthermore, team member Tim Adams took
Image Processing this past semester, and has incorporated
what he has learned into this section as well. Moving forward,
however, we may need to study more image processing
techniques to account for lens distortion or other errors that
may affect the accuracy of our calculations.

We have already designed multiple experiments to test
this block. Our most efficient and accurate experiment
proceeds as follows: identical cameras are placed at a fixed
distance apart on the ground and are pointed directly up. A
strike zone and axis are drawn on a board or wall. One person
throws multiple baseballs at the wall or board so that the
pitches travel over the cameras, and a separate person marks
the location that the ball strikes the board or wall. These
positions are taken to be the points at which the ball crossed
the strike zone plane at the front of the plate. When these
videos are run through our MATLAB algorithm, the measured
positions are compared to the results of the image-processing
block. By repeating this type of experiment several times, we
can develop a suite of tests that test all of our most difficult
edge cases, as well as more typical pitches that will be seen in
practice.

D. Enclosure

For the home plate system to perform effectively in a real-
world game environment, we require a strong enclosure that
will protect our electronics from damage. Normal game play
will see the plate being stepped on or slid into by a player and
hit by a bat.

Using AutoCAD, we were able to draft plans for

placement of the hardware. The standard 1.5-inch depth plate
provides plenty of space for extra battery storage or any
unforeseen corrections to our hardware. Fig. 5 shows we could
stack 3 batteries on top of each other and effectively triple our
power storage, while still comfortably fitting within our space
constraints.

In addition to fitting our hardware, our enclosure must

provide suitable support to withstand normal gameplay. Fig. 4
shows the top view of our hardware placement, and provides
insight into how we can support the enclosure. Using
continuous cross braces will hold the integrity of the plate
while minimizing any flex that could damage the components
held within. Areas of white free space show good places for
bracing, and as can be seen from Fig. 4, there is a significant
amount of free space available.

Fig. 4. Side view of enclosure and components inside. Design leaves significant amount of empty space if more battery storage
is required.

Fig. 5. Top view of enclosure and components inside.

The backside of the plate will be sealed with one

continuous piece of material, most likely sheet metal to help
dissipate heat and provide structural support. This will
complete the prism, strengthening the entire structure. In order
to enable the camera lens to see the pitch, the top of our plate
must be compromised. Thin sheets of a polycarbonate will
weatherproof and shock proof the lenses while keeping optical
distortion at a minimum. The polycarbonate material will be
layered both under the plane of the top of the plate and above
the plane of the top of the plate. This will allow for backup
protection in case one fails. To ensure waterproofing around
the entire enclosure, all joints will be caulked or sealed with
rubber cement.

E. App

The app is the main interaction point between our system
and the user. It will be the only place the user can interrupt
and change calls, and in tandem with LEDs on the plate, will
indicate the called pitches provided by the system. Developed
for Android using Android Studio [7], the app will allow users
to start a new game and pair with their plate via Bluetooth.
After doing so, the main game screen appears, where the user
can view and update the current pitch count, score, and inning
(see Fig. 6). All labels double as buttons which increment their
respective values, rolling over to 0 if they exceed the
maximum possible value (i.e. 3 for outs or strikes and 4 for
balls). An edit screen will also be available to edit score or
inning number if these values are accidently incremented.

We require two-way communication between the app and
the home plate for complete functionality. The home plate will
send pitch information to the app, along with its current

reading of general game information such as current inning,
number of outs, and score. The app will send the home plate
any updated information the user might provide about general
game information or the current pitch count, as well as the
current batter’s height.

So far, we have sketched the basic UI interface, but we
still need to implement the core functionality and Bluetooth
pairing. To accomplish this, we will build on our experience
using Java in our previous courses. Namely, we need to learn
how to interface our app with a Bluetooth device, and
seamlessly update the pitch count based on new information
from the paired device.

Our app can be tested independently of the rest of the

system by manually inputting test cases via the console to our
app. The test cases will be formatted in the same way as the
data received via the Bluetooth interface from the app, and
will allow us to verify that all user interface components work
successfully. After communication between the
microprocessors and app is established, the same test cases
can be sent from the microprocessor.

Fig 6. Main page of app. Each label also acts as a button
that can increment its given number

Team 1 Mid-Year Design Review Report, SDP17

6

Fig. 7. Gantt Chart of CDR Deliverables.
.

III. PROJECT MANAGEMENT

Promised Delivered?
Demonstration of
image processing
algorithm (MATLAB)

Yes: given two .MOV files, returns
pitch determination

Demonstration of
image collection

Yes: prototype system collects live
video from two cameras and lights
up sections 3x3 LED grid
corresponding to location detected
motion in image

Table 2. Promised MDR Deliverables.

Our team successfully accomplished both of our MDR
deliverables as outlined in Table 2. As promised, we
completed our core image processing algorithm in MATLAB,
demonstrating that our basic method is sound and achievable.
We recorded videos using our pre-described testing and then
demonstrated that given two video files representing the
different cameras, our MATLAB code could take, perform our
entire algorithm and output the location of the pitch in 2D
space where it crossed the plate. We also developed a
prototype that not only can collect image data, but can process
that data in real time to detect motion, displaying the first step
of our overall image processing algorithm.

Moving forward towards CDR, we need to design and

ship out a PCB for our cameras and microprocessors. Our
current prototype is only capable of recording at 30 frames per
second, and lacks the field of view required to meet our
specifications, and so we have ordered an entire suite of new
parts to build a fully functional prototype. In the first few
weeks of the semester, we will combine these parts and our
PCB to create a prototype. Once our hardware is complete, we
can begin building our enclosure.

Concurrent to this work, we can develop our software

components, both for our core image processing algorithm and
the Android app. The image processing algorithm will first be
ported over to C, and then, once it has gone through an initial
round of testing, will be translated to XC, the variant of C that
runs on our XMOS microprocessors. The app will be

developed relatively independently of the rest of the system,
establishing Bluetooth connectivity in Mid-February. The
Gantt Chart (Fig, 7) provides an overview of our plan.

Our team dynamics have been quite good, demonstrated

by our ability to continue to work together and remain in good
spirits despite several setbacks this past semester. Team
management was made more difficult throughout the majority
of the semester, as Justin was in New Zealand studying abroad
until mid-November. As a result, we met weekly with the four
of us at a time when we were all available, and then the three
of us in Amherst met weekly with our advisor Professor Wolf,
recording and updating Justin after each meeting. Most of our
communication has occurred over Facebook Messenger,
which has allowed us to both message and conference call
with the entire team as Justin has been abroad.

Throughout the fall semester, much of the work we have

done has been done collaboratively, with team members often
overlapping in responsibilities and taking turns driving the
project forward at different points in the semester. Much of the
work this semester involved determining the specifications
necessary for our project, which was truly a joint effort. Justin
has taken the lead in interfacing with the cameras and
designing the PCB, and will continue to lead in those
capacities. Matt and Tim have collaborated extensively on
developing the overall algorithm in MATLAB. Moving
forward, Tim will take the lead in developing the algorithm in
C, and work with Justin to translate it to XC. Jason and Matt
have worked together to develop a large number of test cases
that will prove useful in testing our algorithm. Jason has
designed the enclosure in AutoCAD and led the way in
tracking down the surprisingly difficult-to-find camera lenses
and other parts that are required for us to meet specification.

IV. CONCLUSION

Much work has been completed at this stage of our
project. At this point, we have successfully demonstrated our
image processing algorithm, established image collection and
real time image processing on a prototype, and ordered all
parts necessary to create our final prototype. We have
collected a variety of test data that will allow us to test our
algorithm, built a user interface for our app, and begun to

Team 1 Mid-Year Design Review Report, SDP17

7

design an enclosure that will protect our system from normal
game-play.

Moving forward, we will design and build our PCB and
construct our final prototype. Concurrently, we will implement
and test our algorithm in C, begin to build an enclosure, and
develop our app. We anticipate that the most significant
difficulties will come from the hardware design of our
prototype as our PCB is fairly complex and may require a
couple of tries to be completely successful. We will buy
ourselves as much time as possible by developing and testing
the algorithm as much as possible in C so that our software
and logic is essentially completed by the time our hardware is
ready. We can also learn how to pair our app to Bluetooth and
finish the app entirely independent of the prototype being
completed.

ACKNOWLEDGMENTS

Many thanks go to our advisor, Professor Tilman Wolf,
who has provided strong guidance and support throughout our
project.

REFERENCES
[1] “Pitching Speeds,” Steven Ellis Pitching Tips [Online]. Available at:

http://www.thecompletepitcher.com/pitching_speeds.htm. [Accessed:
Dec-2016].

[2] “Much required to become MLB Umpire”, MLB.com [Online].
Available at: http://m.mlb.com/news/article/2173765//. [Accessed: Dec-
2016].

[3] “How well do umpires call balls and strikes?” Beyond the Box Score
[Online]. Available at:
http://www.beyondtheboxscore.com/2014/1/27/5341676/how-well-do-
umpires-call-balls-and-strikes [Accessed: Dec-2016].

[4] “PITCHF/X”. Sportvision [Online]. Available at:
http://www.beyondtheboxscore.com/2014/1/27/5341676/how-well-do-
umpires-call-balls-and-strikes [Accessed: Dec-2016].

[5] “What the Heck is PITCHf/x?”, The Hardball Times Baseball Annual
2010 [Online]. Available at:
http://baseball.physics.illinois.edu/FastPFXGuide.pdf. [Accesesed: Dec-
2016].

[6] “XUF216-512-TQ128 Datasheet”, XMOS. Available at:
https://www.xmos.com/download/private/XUF216-512-TQ128-
Datasheet(1.11).pdf [Accessed: Feb-2017]

[7] “Android Studio”, Android. [Online] Available at:
https://developer.android.com/studio/index.html. [Accessed: Dec-2016]

