Final Project Review

Team 1 (AutoUmp) April 11th, 2017

Department of Electrical and Computer Engineering

Advisor: Wolf

The Team

Timothy Adams CSE

Jason Camiel EE

Justin Marple CSE

Matt Barnes EE

The Setting

Current Solutions

InaccurateBiased

Prohibitively expensiveExtensive set-up required

Our Solution

- A self-contained, autonomous home plate that detects balls and strikes
- Cheaper than traditional technology
- Not subject to human error

Requirements

- Detect balls/strikes accurately (>= human ump)
- Detect fastball of average little league player
- Real-time use
- Self-standing
- Battery life lasts duration of game
- Robust against physical impacts, changing weather
- Allow for different height batters

Key Challenges

- Detect and track ball with cameras
- Embedded hardware
 - Image processing on an embedded system with power/size constraints
- Design of robust, self-enclosed system that still allows for user notification and feedback
 - Enclosure
 - App, 2-way communication

Block Diagram - Hardware

Specifications

- 16.7ms throughput for image processing tasks
- 60fps with 110 degree field of view in flight direction
- Maximum 1 second delay
- Self-standing
- Can withstand physical conditions at baseball field
- Battery life > 3 hours
- Adjustable height of strike zone from app

Ball Detection

- Interpolate path of ball using a ball on either side of the strike zone
- Calculate pixel location of strike zone intersection

Ball Detection

 Use pixel location from each camera to calculate (x,y) position of baseball in strike zone plane

Ball Detection

Tilt cameras in order to see entire strike zone

Dealing with Bottlenecks

Camera Protection

- Baseball fields made up of dirt
- Polycarbonate: (Mohs)
- Glass: 5.5 (Mohs)
- Quartz: 7 (Mohs)
- Sapphire: 9 (Mohs)

Requirements

Detect balls/strikes accurately Often
Detect fastball of little league player ~35mph
Real-time use Yes, no perceptible delay
Self-standing Yes
Battery life lasts duration of game Yes
Robust against physical impacts, changing Yes weather
Allow for different height batters Yes, via app

Costs

- Initial Prototype Development: \$380.26
- Final Prototype Development: \$677.25
 - PCBs: \$478.28
 - Enclosure: \$198.97
- Miscellaneous: \$185.69
- Development Cost: \$1242.94
- Final Prototype Actual Cost: ~\$200.00