
 1

T. E. Coyle from Easthampton, Ma (e-mail: tcoyle@student.umass.edu)
J. D. Kober from Easthampton, Ma (e-mail: jkober89@gmail.com)
S. A. Rosa from Peabody, Ma (e-mail: sarosa@student.umass.edu)
K. W. Van Tassell from Chelmsford, Ma (e-mail: kvantass@student.umass.edu)

Abstract—We introduce RCA (Real-Time Concussion Analyzer),
a real-time system that will allow a football coach to remotely
monitor the impacts a player experiences during a game. This
system will provide the likelihood that a player has experienced
a concussion, allowing coaches to make more informed decisions
pertaining to player safety. RCA incorporates an array of
accelerometers inside each player’s helmet. The sensor data
from each helmet is wirelessly transmitted to an Android device,
where an application will query a player database on a server,
and determine the likelihood of concussion.

I. INTRODUCTION
ONCUSSIONS in sports have become a growing concern in
recent years, despite advancements in safety equipment.

According to the Center for Disease Control and Prevention,
a concussion is a type of traumatic brain injury, or TBI,
caused by a bump, blow, or jolt to the head that can change
the way your brain normally works. “While all concussions
are serious, most occur without loss of consciousness.” [1]
Recognition and proper response to concussions when they
first occur can help prevent further injury or even death.
Current concussion detection relies on a coach to constantly
check a player’s reported symptoms after each impact. They
monitor a wide array of symptoms from memory to balance.
However, many players will try to mask their symptoms [2],
[3]. This problem is not localized to any age of player,
though RCA is aimed at the high school level. In June of
2012, over 2000 former players filed a lawsuit against the
NFL claiming that the league hid the link between football-
related head trauma and permanent brain injuries [4]. This
lawsuit brought concussion awareness to the forefront of
sports medicine.

Preventing concussions in football seems to be an
extremely challenging goal, but detecting them is slightly less
challenging. RCA is a system intended on detecting
concussions in the hopes that a coach will remove an injured
player before they may suffer any further damage. However,
a system such as RCA could possibly influence how the game
of football is played. If such a system was to be employed,
players may find themselves removed from games more
frequently. This could lead to opposing teams targeting key

players, knowing that the key player would have to be
removed from the game after receiving a certain concussive
force. This problem has been addressed within the last
decade by not only researchers but also private companies.
There have been a few systems developed to address this,
most notably the Head Impact Telemetry (HIT) System [5].
The HIT System takes a similar approach to this problem,
utilizing an array of linear accelerometers with wireless
transmission to an off-field base station computer. This is a
data collection system that lacks portability at the base station
and is not cost efficient. Providing only data on forces, there
is no likelihood of a concussion presented.

To begin the design of RCA, we developed system
specifications by reviewing the current solutions and their
limitations. None of the current systems had a way to adapt
for multiple sub-concussive impacts, which may be as
dangerous as a single serious concussive impact. With this in
mind, RCA will not only have wireless transmit capability,
but also have the capability for wireless receiving. From their
data sheets, the combination of the sensor network, processor,
and radio in the helmet is restricted to using 302 mA and 5 V
[6], [7], [8]. This means RCA will have a maximum power
of 1.51 W. The Android device has its own internal battery
and is not included in this power analysis. RCA is installed
in a player’s helmet in such a way that the player will not
notice the system. There is a threshold setting in the
microcontroller, imbedded in the helmet, to account for minor
accelerations that are not related to impacts. In the event of
an impact, this threshold will be broken and trigger
transmission of the impact data to the Android device. From
the impact data, accelerations of all six sensors, the device
will compute a resultant hit vector H. This is a single vector
representation for the acceleration of the head’s center of
mass. With the components of H, the device then calculates
the probability of a concussion. Finally, the Android device
stores the results to a player database. The coach will receive
an alert with the player’s name and number, as well as the
probability of concussion and show the impact location. This
application on the device will have a user menu for the coach
to add or remove players, as well as make notes and query the

C

RCA: Real-Time Concussion Analyzer
Timothy E. Coyle, EE, Justin D. Kober, EE, Scott A. Rosa, CSE, and Kenneth W. Van Tassell, EE

 2

data after the games. Table I shows a list of specifications.

II. DESIGN

A. Overview
Our approach to this problem is to develop a rugged sensor

network to be deployed in a helmet. This network consists of
six accelerometers, a microcontroller, a wireless radio, and a
battery to supply power. We have ruled out the use of
gyroscopes and triple-axis accelerometers after speaking with
Professor Steven Rowson from Virginia Tech. Both of those
sensors proved to be too technically challenging to
implement, with the calibration and stability requirements of
each. Instead, RCA utilizes an array of single-axis
accelerometers oriented towards the center of mass of the
head. This array provides a robust solution; if one sensor
shifts the system will be less prone to error. From the linear
accelerations that these sensors collect, RCA calculates
rotational accelerations, which are needed for the risk
calculation. We decided on using an 8-bit microcontroller as
our impact data processor instead of an FPGA or other
means, due to our familiarity with these devices.
Microcontrollers have the ability to interface with analog
sensors, process information, and transmit data to other
devices. A Bluetooth radio is interfaced with the
microcontroller, as this type of radio can easily communicate
with an Android device. Bluetooth provides a proof of
concept, but with range limitations of these radios RCA is not
a full scale product. As mentioned previously, we have
selected an Android device for our user interface, as Android
is the most prevalent operating system for smartphones [9]
and it supports open source programming. To store the data
and player history, a server was developed with two separate
databases, as to not overload the device’s memory. We had
also initially considered a base station type of approach with a
receiver and a laptop, but with the portability requirement we
decided to make the system as mobile as possible.

RCA includes three main blocks:
1) Impact Data Collection: An array of sensors placed in the
helmet, along with a microcontroller, Bluetooth radio and
power supply. Together, these devices detect an impact and
transmit the data to be processed.

2) Data Analysis: This block is responsible for the
calculations of risk, as well as storing and receiving the raw
data and player information. It communicates with the
Android device and the backend server. By having the data
analysis preformed on the Android device, we minimized the
processing done in the Impact Data Collection block. This
leads to a low-profile system, keeping the increase in helmet
weight minimal.
3) User Interface: The user interface is an Android device.
Here, the coach can input player rosters, retrieve information
about the impacts a player has sustained, and receive real-
time alerts with the probability that a player has suffered a
concussion. This block communicates with other blocks via
Bluetooth and the Internet.

 By utilizing Bluetooth and Android devices we can keep
the cost to a minimum, as most users will have a capable
Android device. These three main blocks are then divided
among the team into four sub-blocks.

B. Sensor Network and Power Supply
 This sub-block of the Impact Data Collection block is
concerned with measuring forces and powering the electrical
components in the helmet. Sensors were placed inside the
helmet as close to the player's head as possible, for the most
accurate measurements. From research at Virginia Tech [15],
the maximum linear acceleration found that a player
experienced over the two year study was slightly less than 200
g’s. For our prototype we will not be inflicting such high g
forces. Our initial sensors were the ADXL 193 [10] which
had a tolerance of +/- 250 g, but due to the scalability, we
decided to use more sensitive sensors. The sensors being used
are micro-electro-mechanical systems (MEMS)
accelerometers. The ADXL78 [6] is a low powered, single-
axis, MEMS accelerometer, with a tolerance of +/- 70 g, and
a sensitivity of 27 mV/g.

Fig. 1. This RCA Block Diagram shows the organization of the project.

TABLE I
SPECIFICATIONS

Specification Initial Requirement Actual Prototype

Weight <5% increase (typically 102 grams) 120g
Range 25 m 40m
Response Time <2 s X
Battery Life >5 hours >5 hours
Cost <$5000 for full team of 52 players $5040
Power Consumption
Acceleration Range
Sensitivity
Durable Packaging

<2 W
+/- 70 g
Only measure actual impacts
Stable and waterproof

1.37 W
+/- 70 g
Threshold of 10 g
Stable &
water resistant

 3

 We spoke with an applications engineer from Analog
Devices, the company that manufactures our sensors, and
confirmed that each sensor needed to be tested for its own
sensitivity value. The sensor output was measured for two
orientations. From the output, we directly calculated the
sensitivity each sensor. Using the data sheet for the sensors
[6], we determined the correct orientation to provide the most
accurate results; the pin for Vdd is the axis of measurement.
Our initial Vdd was 5046.2 mV. We placed each sensor so
Vdd was pointing up, recorded its output, place the sensor so
Vdd was pointing down, and recorded its output. Using
Equation (1), we were able to characterize each sensor’s
sensitivity. Table II, shows our results for each sensor.

 (1)

 With the sensors partially characterized, we strategically
placed them in the helmet to capture the x-axis, y-axis, and z-
axis of a player's head; the axis of measurement is normal to
the center of gravity. The placement of the sensors came from
Joseph Crisco’s paper on locating the impact [17]. They
explained where their sensors were placed, theta and alpha,
and what angles gave the least amount of error. To make our
packaging easier, some sensors were moved by a few degrees.

Table III and Fig.2 show the final placement of each sensor in
our helmet in terms of theta and alpha.

Fig.2. This relates the values from Table III to the position in the helmet; x-

axis is back to front, y-axis is left to right, z-axis runs up the spine to top.

To finish characterizing the sensors we conducted another
test to focus on response time of the sensor, primarily the time
to peak acceleration. Throughout the test, we saw how the
sensor responded to multiple impacts of the same force,
impacts from different directions, and what kind of realistic
forces we can apply on demo day. Performing the same test
multiple times also proves the sensor is functioning properly.
Fig. 3 below shows a realistic impact reading from the
oscilloscope, the peak acceleration happens within 2 ms.

 Fig. 3. This shows the peak acceleration of ADXL78.

The test we conducted utilized a basic pendulum to
generate an impact of known magnitude. The sensor was
placed, in a helmet, so it measured in the direction of the
swinging pendulum. The pendulum impacted the helmet
giving us a measurement of the impact. This measurement
was sent to the processor and transmitted to a computer for
analysis, which showed that we can repeatedly inflict an
impact with the same magnitude. Once we understood how
one sensor worked we built the network of sensors to go in
the helmet.
 The other aspect of this block deals with powering the
system in the helmet. We conducted a power analysis to find
the total energy our system consumed. Using the data sheet of
every component in the helmet, we calculated the worst case
power. Then we converted the power into Joules. From
Joules, we were able to find the total mAh that our system
uses. Table IV below shows the worst case power analysis of
our system. Most batteries are rated in mAh, so knowing that
value helped to determine a type of battery to use; our initial
thought was to use a coin cell battery because of it small

TABLE IV
WORST CASE POWER ANALYSIS OF OUR SYSTEM

Device Voltage (V) Current
(mA) Power (W)

ATmega32 5 200 1
Bluetooth 3.3 100 .33
ADXL 78 5 1.3 .039 (6 sensors)

Total Power (W)

1.369

 mAh Needed 1369

TABLE II
CHARACTERIZATION OF SENSORS SENSITIVITY

Sensor Vdd Up (mV) Vdd Down (mV) Sensitivity (mV/g)

0 2441.9 2497.1 27.6
1 2467.2 2522.2 27.5
2 2485.3 2540.6 27.6
3 2479.0 2534.2 27.6
4 2464.1 2519.7 27.8
5 2480.2 2535.4 27.6

TABLE III
PLACEMENT OF THE SENSORS

Sensor Theta (θH) Alpha (αH)
0 0 20
1 -90 15
2 -180 20
3 90 15
4 75 50
5 -69 50

Z

Y

 4

weight and size. Unfortunately, the coin cells could not output
enough current for our system to function properly, so we
began looking into other options.

We found a USB battery pack [18] that has 2000 mAh,
outputs 700 mA peak at 5.5 V, and has an added bonus of
being rechargeable. To be sure this battery would work; we
analyzed our system’s typical energy consumption by
measuring the changing voltage from a Laboratory DC power
supply across a small resistor in series with our system. Using
Ohms law we found the current, calculated power, and
converted to energy.
 Both the worst case power analysis and typical power
analysis proved the battery would work, so we implemented it
into our system. As a final test for the battery, we powered the
helmet for more than five hours with the battery. During this
time we measured Vdd, to be sure there was no fluctuation,
then transmitted data, to be sure the correct data was being
sent from an impact. We took these measurements every 15
minutes. After five hours, Vdd remained constant and the
data was still being sent correctly. With the sensors
characterized and integrated into the helmet and the battery
for the system working properly, the focus of this sub-block
can now shift to final helmet packaging of the Impact Data
Collection block.

C. Impact Processing and Communication
As a sub-block of the Impact Data Collection block, the

impact processing and communication block is responsible
for detecting an impact and then transmitting the sensor data
to the User Interface block. At the heart of this sub-block is a
microcontroller that is used to process the incoming signals
from the accelerometers described above. Once the signals
have been processed by the microcontroller they will be either
discarded, or in the case of an impact, they are serially
transmitted to a Bluetooth radio. This radio communicates
with the impact data to the user interface.

The microcontroller selected for this block is the
ATmega32U4 by ATMEL [7]. This microcontroller was
selected for RCA after careful review of its features. There
are six analog signals coming from the sensor array that will
need to be converted to a digital signal for transmission. This
microcontroller has 12, 10-bit ADC (analog to digital
converter) channels, with six being used for the ADC
conversions of the sensor signals. The ATmega32U4 also has
a programmable serial USART, which allows the
communication between the microcontroller and the
Bluetooth radio. This microcontroller also has 2.5 kB SRAM,
which can be used to buffer the impact data before
transmitting. All this is in a TQFP package, which allows us
to have a small circuit to fit inside the helmet.

The programming of this microcontroller in C is familiar,
as we have use a similar 8-bit AVR microcontroller, the
ATmega32, in previous course work. There are many features
of this microcontroller that we utilize for RCA: the ADC,
USART, Timers, and Interrupts. While we had previous

course work, we found online tutorials essential in
configuring some elements of the ATmega32U4 [11], [12].
We use an external 16 MHz clock so that we can utilize the
fastest prescaler of the ADC. To increase throughput, the
granularity of the ADC was set to have 8-bits of resolution,
thus the outputs range from 0-255. With 5 V supply, each
incremental value of the ADC output carries a weight of 17.6
mV. With the sensitivity of the chosen accelerometer, 27
mV/g, this leads to a sample granularity of 0.7 g’s per ADC
value.

Initially the design for communication was going to be
XBee radios, for the full range of 100 m, but due to our
decision to have a scaled down prototype we decided to use
Bluetooth. The Bluetooth radio selected for this block is the
BlueSMiRF Gold by Sparkfun [13], which utilizes the Roving
Networks RN-41 Bluetooth module [8]. This Bluetooth radio
is a class one Bluetooth device with an advertised range of
approximately 100 m. We found this range to be quite
exaggerated once the device was configured, and could only
connect at a maximum range of 40 m. This radio is
Bluetooth version 2.1+EDR with built in error correction for
the 8-bit packet transmission and 128-bit encryption. This
module has an advertised maximum data rate of 240 Kbps.

To interface this radio with the microcontroller, we first
had to initialize the USART feature within the ATmega32U4.
Once we configured the Bluetooth radio and microcontroller,
we tried to read the serial stream on a laptop terminal
window. We could communicate between the microcontroller
and the laptop over Bluetooth, although the symbols were
being distorted. To fix this issue, the baud rates on both
devices were synchronized at 9600.

Once we completed the basics of this sub-block, an
experiment was conducted to determine the accuracy to which
the user can receive the sensor data. The output of the sensor
was measured directly with an oscilloscope. Simultaneously,
the sensor data was recorded on the laptop after the Bluetooth
transmission. From this experiment, we were able to learn
that our sample rate was too low, 166.7 Hz. We had
conducted measurements of the sensor directly with an
oscilloscope and found that the average response time to
reach peak acceleration was approximately 2.5 ms, 400 Hz.
This corresponds with the specification in the accelerometers
data sheet for the 2-pole Bessel filter at the output, stating
that the 3 dB cutoff is at 400 Hz. By enabling double speed
operation of the USART, optimizing the baud settings of the
ATmega32U4 and the BlueSMiRF, buffering the data before
transmitting, and modifying the configuration of the ADC
code, we were able to achieve a sample rate of 1.5 kHz for
each sensor. This sample rate is above the Nyquist rate of
each sensor.

Upon completion, Impact Processing and Communication
sub-block was tested to ensure accurate sampling. The initial
results from our experiments using the sensor proved to be
misleading, as they are not true sinusoids and do not have

 5

predictable amplitudes. To fully test this block, RCA was
removed from the helmet and sensor 0 was replaced with a
sine wave of 333 Hz, 2V peak-to-peak amplitude with a 1V
offset from a function generator. Similarly, sensor 1 was also
removed and replaced with a square wave of the same
parameters as the sine. This frequency was chosen as it
represents the typical impact duration measured with a single
sensor and the oscilloscope.

This experiment consisted of sampling ADC channels 0
and 1 to try to accurately sample the square and sine waves
respectively. It can clearly be seen from the initial results that
when sampling 2 channels, each at 4.5 kHz, the system could
not accurately sample; in fact the two functions were being
combined, see Fig.4.

Fig. 4. This shows the initial ADC sampling a sine wave incorrectly.

 To solve this issue we had to input even simpler functions
than the sine and square wave. We used a 3V DC signal on
channel 0 and a 1V DC signal on channel 1. Even these
values would sometimes be sampled incorrectly, in a
repeating manor. This led us to research more into the
sample and hold times of the ADC. The data sheet says that
the ADC takes 13 clock cycles to complete a conversion.
However, after careful review of this section, we found that 13
clock cycles was the ideal time but there was a variance to
this time that the data sheet did not have quantified.
 The solution to this issue was to rewrite the ADC sampling
code to utilize a more efficient waiting period. By using an
interrupt vector in the microcontroller, instead of a while
loop, we were able to obtain accurate samples. The interrupt
vector triggers only when a conversion is complete, and hence
ready to be accurately processed. In that vector the code then
buffers that result and starts the next conversion. Again the
square wave and sine wave were the only channels being
sampled at 4.5 kHz each. This time the samples fit the sine
wave. The final test was to sample both the sine and square
functions, along with the remaining 4 sensors, effectively
reducing the sample rate of each to 1.5 kHz. Again, the sine
wave sample points fit the expected curve, see Fig. 5.

Fig. 5. Sine wave being sampled correctly at 3 sample rates.

 After proving the microcontrollers accuracy, the final
portion of the code to this block was addressed. The
threshold triggering was implemented to avoid continuously
streaming data to a device, a necessary feature with the
number of players on the field at any time. The threshold for
an impact event was selected to be 10 g’s after reviewing the
research from Virginia Tech [15]. This is achieved by
continuously sampling the ADC and checking the force
measured at that time instance. If any sensor samples are at
or above this threshold, the microcontroller starts a timer and
then samples each sensor in a continuous loop starting with
sensor 0, incrementing in order. Each value is buffered
within the SRAM until the timer reaches 50 ms, a time
chosen based on osciliscope readings from a single sensor
impact and verified with research [15]. Once the timer
reaches 50 ms, another interrupt vector triggers, in which the
buffer is emptied one sample at a time and transmitted in
order. All the counters are reset and RCA goes back into
monitoring mode to await the next impact.

D. Data Analysis
 The purpose of this block is to determine the probability of
a concussion for a specific player based on the hits the player
has taken. It is broken into two main parts, the database and
the risk algorithm. The database stores the raw accelerometer
data, player information, and the hit vector H. The risk
algorithm takes in sampled points from each accelerometer
and interpolates on the data points. The algorithm calculates
the hit vector at every point and selects the largest magnitude.
The algorithm calculates risk using the resultant vector which
it stores in the database. Lastly, the algorithm queries the
database for hit vectors to calculate the cumulative risk. Once
the risk algorithm was written, it was tested using black box
testing methods. The data processing and storage, acts as the
backbone for the Android application, which displays the risk
of a concussion for each hit and the cumulative risk.
 The database is a MySQL, My Structured Query Language,
database that is on a remote server. The database is
controlled by PHP scripts, which can connect, read, and write
to the database [14]. The risk algorithm uses the PHP scripts
to store the hit vector, player name, player age, player
number, as well as the raw accelerometer data into the
database. The hit vector and raw data tables in the database

 6

provide a time stamp for each entry. With all this
information stored into the database, the risk algorithm [15]
can use this information and professionals can see data to
help diagnose a concussion.
 To continue developing the risk algorithm, we needed a
way to correlate linear acceleration to probability of
concussion. We found a study [15] done by Steve Rowson, a
professor of the School of Biomedical Engineering &
Sciences at Virginia Tech. Rowson performed a study on
concussive impacts by equipping 314 collegiate players’
helmets with the HIT System, which consists of six
accelerometers and calculates a resultant linear head
acceleration at the CG, center of gravity, of the head. Also,
21 players’ helmets were equipped with the 6DOF, Six
Degrees of Freedom, system that had twelve accelerometers
instead of six. The 6DOF is able to measure linear and
rotational acceleration. The study had monitored players
between 2007 and 2009 and noted when players were
diagnosed with a concussion [15].

In this study an equation was derived that converts linear
acceleration to rotational acceleration from the equations of
motion modeling force acting on a head [Equation (2)].

α = m ax2 + ay2

I
d

In Equation (2), α is rotational acceleration, m is the mass of
the head, ax is the peak acceleration along the anterior-
posterior axis of the head, ay is the peak acceleration along
the medial-lateral axis of the head, I is the moment of inertia
of the head, and d is the perpendicular distance from the head
CG to the impact vector [15]. The unknown variables of m,
d, and I were determined through a regression model analysis
of recorded 6DOF acceleration data and confirmed with
laboratory validation experiments. A least squares technique
was used to equate (m*d/I) to 6.48 m-1 [15].
 The study also developed an equation that correlated
rotational acceleration to risk. To develop the risk equation,
the study performed a statistical analysis on occurrences of
sub-concussive impacts and concussive impacts that were
reported. A logistic regression analysis based on weighted
sub-concussive and concussive head acceleration distributions
were used to express risk as a function of rotational head
acceleration [Equation (3)] [15].

In Equation (3), α is rotational acceleration; c1 and c2 are
regression coefficients. The regression coefficients were
determined using a generalized linear model technique. The
c1 coefficient was calculated to be -12.531, and the c2
coefficient was calculated to be 0.002 [15].

After reviewing his study and speaking with Steven
Rowson over the phone, the risk algorithm was developed to
model the equations derived in the study. First, the algorithm
must calculate the hit vector that is used to find ax and ay
from Equation (2). The algorithm receives the raw

accelerometer data and has to interpolate each sensor graph.
In order to do this, the algorithm uses a sliding quadratic
interpolation to create an accelerometer graph from every
three accelerometer sample points. The algorithm then
calculates the hit vector at every time interval along the
accelerometer graphs [Equation (4)].

Equation (4) is a least squares model derived to calculate the
magnitude, alpha and theta, of the hit vector from multiple
nonorthogonal single axis accelerometers [17]. In Equation
(4), alpha is the angle of elevation and theta is the angle of
azimuth. The coefficients in Equation (4) with a subscript “i”
represent components of an accelerometer, and the
coefficients with a subscript “H” represent components of the
hit vector. To perform this calculation, the algorithm breaks
the equation into known and unknown variables to create
three different matrices. The first matrix, C, is composed of
the parts in Equation (4) involving locations of each
accelerometer. The second matrix, X, is composed of the
parts in Equation (4) involving the hit vector components.
The third matrix, A, is composed of the value for each
accelerometer. The algorithm computes the solutions for
matrix X using matrix C and matrix A [Equation (5)].

The algorithm uses the solutions of matrix X, a, b, and c, to
solve the hit vector components in matrix X [See Equation
(6)].

After the hit vector is calculated at every time interval, the
correct time to calculate the hit vector is selected. The
algorithm looks for the time when the magnitude of the hit
vector is maximized to select the corrected hit vector data.
Once the hit vector is selected, the x and y components are
calculated from the hit vector. The x and y components are
inserted into ax and ay in Equation (2), respectively. The
rotational acceleration produced from this data is then used to
calculate risk with Equation (3).

When the user requests the cumulative risk, the algorithm
queries the database for all of the peak linear accelerations for
that player. The algorithm then converts the hit vector that
was returned from the query into a rotational acceleration
[Equation (2)]. The rotational acceleration is then used to
calculate a risk [Equation (3)]. The risk algorithm then uses
a weighted average to return the cumulative risk for the user
interface code to display. This average of risk is currently our
way to incorporate the possible dangers of multiple sub-
concussive impacts; this will be subjected to change with
future research.
 The entire risk algorithm was black box tested by
developing a Java test program that would parse input text
files containing simulated impact data, clear the database,
and run the impact data through the risk algorithm. The Java

(2)

(3)

(4)

(5)

(6)

 7

test program then writes the rotational accelerations and risks
to output text files. A python script was used to generate this
simulated impact data. Another python script was written to
parse the output text files, store the calculated rotational
accelerations, and calculated risks into an excel file. The
script also stores the expected rotational accelerations and
risks into the excel file. The results of this test were graphed;
they matched the graph of the risk function from Rowson’s
study [Equation (3)].

E. User Interface and Communication Block
This block’s purpose is to display concussion data to the

user and allow user input to control the application and
system settings. The two main parts of this block are the
Android application and the application’s interface with the
Android device’s internal Bluetooth module. Currently, the
ability for the application to receive a full data set and analyze
the information is operational. The application then displays
the impact’s magnitude, location, and risk of injury in a pop-
up notification that is shown to the user, shown in Fig.6. The
application uses the default display as its idle screen, and
displays the last few hits that were detected. The pop-up
occurs on the idle screen, which gives the user the option to
inspect the impact information in depth. In order to wrap up
this block of the project, a
method to accept user
settings and a visual
improvement of the
application will be executed.

The application is written
using Java in the Android
programming language,
utilizing the Android
Development Tools plug-in
for Eclipse IDE. For
programming, we took
advantage of prior coding
experience and the
development tools available
to write the application. The
application currently has six
main activities that function
together to handle the data
and provide meaningful
interpretations. First is the main screen activity, where the
user can connect and disconnect to the Bluetooth module,
housed in the helmet, display previous hit history, and
monitor for newly detected impacts.

The next activity is the graph view, which allows the user to
view a plotted graph of the received acceleration data for each
of the six accelerometers. This graph activity for a single
accelerometer, shown in Fig. 7. comes from an open source
graphing library that is available for use in Android
development.

Another activity in the application is the cumulative hit
histogram display. This activity can be displayed upon the

user’s request, and can show
a histogram of hits for each
player. The histogram was
recommended by staff of the
University’s Athletic
Department as a tool to
observe the effects and trends
as a result of multiple hits at
varying intensities. The
cumulative risk activity,
which retrieves the impact
data from the server and
shows a comprehensive
analysis of the player,
displays their impact history,
and cumulative risk of
concussion. It is from this
display that a user can make
a call to the histogram
activity described above to
see information of multiple hits.

The user settings screen is a simple but important piece to
the application that allows the user to set and change different
options within the application, such as a coach vs. trainer
view. Throughout the development of the application many
bugs were fixed that caused reliability issues and forced the
app the close. The functionality and reliability of the
application has been improved greatly and the final focus of
the application will be on improving its ease of use and
aesthetic appearance. Finally, the application’s Bluetooth
interface was created in reference to the tutorial on Android
device and Arduino Bluetooth Communication [16]. This
tutorial provided the necessary code examples to detect,
connect, and disconnect an Android to an Arduino. We were
able to adapt this code to connect to our ATmega
microcontroller and interface it with its USART capabilities.

As we tested the Bluetooth module for the distance, as
outlined earlier in the document, we also took that
opportunity to test the robustness of the Bluetooth data
transfer itself. We observed that at distances before losing
connection, we saw a significant drop in the rate in which
data was being acquired. The limitation of the Bluetooth
device has proven to be the main factor in restricting the
range that our system will perform. The response time of the
data transfer across the Bluetooth and through the data
processing unit was measured to characterize the system
response time. The average response time was measured to be
X ms, which describes the time it takes for the application to
receive all data point via Bluetooth and perform the necessary
computations to make that data meaningful and display it.
This response is acceptable and if we make some adjustments
to the code for efficiency, it will be sufficient time to warn a
coach and remove a player before they begin another play.

III. PROJECT MANAGEMENT
Utilizing effective tools, such as timelines, open lines of

Fig. 6. Impact notification screen

Fig. 7. Accelerometer graph

 8

communication, and a Gantt chart, the Impact Data
Collection Block is functioning properly. An open line of
communication is proving to be are most important tool as we
troubleshoot the Data Analysis Block.

The team members of RCA compliment each other very
well, and there is a great group dynamic. Every member
brings something unique to the table and all help each other
out and try to become involved with every facet of the project.
On more than one occasion a team member may have been at
a low point in their workload and has helped offset another’s.
We have regular team meetings once per week, and one team
meeting with our advisor, Professor Hollot per week. Scott
Rosa is the CSE of the group and is the data processing and
server expert, as well as maintains the website. Kenneth Van
Tassell is the Android device programmer of the group, and
working on the wireless communications on the Android
device end. Justin Kober is responsible for the sensor
network and power for the Impact Data Collection block, as
well as validation testing of the project. Tim Coyle is
responsible for the microcontroller and wireless transmission
of data to the Android device, and is also the team manager.

IV. CONCLUSION
Since MDR, we have integrated the sensor array into the

helmet, which is now sampled by the microcontroller and
powered by the battery. The sample rate has been optimized
and threshold triggering has been implemented. The user
interface will need to be configured to input players and recall
their information at a user’s request. The possibility for two-
way communication between the Android device and helmet
exists, but for this iteration of RCA it will not be
implemented due to the project deadline and debugging
issues.

The majority of the project is completed, though through
integration we have found issues that need to be resolved.
The Impact Data Collection Block is constructed and
produces accurate results; all that remains is final packaging.
The User Interface Block has the basic GUI design and
underlying structure to interface with the other blocks. The
application will be refined and have other menus and options
added for a better user experience. The Data Analysis Block
has been implemented with an updated algorithm to increase

speed but needs optimization for accurate results.
Currently, upon impact, RCA transmits the data to the

Android device where the user will see the correctly measured
force and corresponding risk. Between now and Demo Day
we will be fixing the data analysis issues, characterizing the
system error, revising the Android application, and
conducting validation testing of our complete system. We
plan on reaching all of our goals for RCA by continuing to
stay ahead of deadlines and keep communication lines open
with the team and advisor.

APPENDIX

A. Application of Engineering
 There are many areas of math, science, and engineering
that apply to RCA, most notably: data structures and
algorithms, classical mechanics, circuit analysis, electronics,
computer networks, hardware organization, communications,
and signal processing. For our software development portion
of RCA the server, databases and Android development were
all done in Java, while the software for the microcontroller
and Bluetooth control are written in C. We have exposure to
these programming languages through the coursework in
ECE 122, ECE 242, ECE 353 and ECE 354. The sensor
network and the power regulation circuitry design were both
essential in our data collection block. These elements of RCA
would not have been implemented correctly had we not had
previous knowledge of circuit design, which we gained in
courses like ECE 211, ECE 212, ECE 323 and ECE 324.
Courses like ECE 313, ECE 314, ECE 333, ECE 374 and
ECE 563 helped us to better understand the fundamentals
needed for successful wireless communication.

B. RCA Cost
 Below is our initial cost analysis for the project. All of the
costs are in the helmet network, as this system assumes the
user already has an android device.

TABLE VI

HELMET NETWORK COST
Device Model Unit Cost Total
Accelerometer ADXL78 $5.58 $33.48 analog cost at 1000ct
Microcontroller ATmega32U4 $5.56 $5.56 sparkfun cost at 100ct
BlueTooth Modem BlueSMiRF Gold $51.96 $51.96 sparkfun cost at 100ct
BlueTooth Module RN-41 $19.96 sparkfun cost at 100ct
PCB $33.00 $4.13 4PCB.com 60 sq in
Estimated Costs
Misc Hardware Caps, Clock, Resistors $1.80 DigiKey

Total Cost $96.93
X 52 Players
 = Helmet Network Cost Per Team $5,040.10

C. Packaging
 The most important aspect of packaging our system into a
helmet was making the system “invisible” to player wearing
the helmet. We wanted to keep the helmet as normal as
possible so we used the padding and open space to house our
system. Wherever the sensors needed to be, we inserted them
into a pad so Vdd was pointing out the back of the pad. The

TABLEV
RCA VS. COMPETITORS

Specification RCA HITS

Imbedded Sensor Network in Helmet Yes Yes
Simple User Interface (Android) Yes No
Accurate Data Collection Transmission Yes Yes
Reliable Data Analysis Partial Yes
Real-time Solution (alerts) Yes No
Two-way Communication Capable Yes No
Cost Efficient Yes No
Full Range of Field No Yes
Waterproof No Yes

 9

pad provides protection from the force of impact and stops the
sensors from contacting the player’s head. The pads will be
sealed with glue to hold them in place and keep out water
near the end of the project. The battery has its own case to
provide protection from the force of impact. To install it in
the helmet we cut a slit in a pad, the width of the battery, and
inserted the battery to stop it from contacting the player’s
head. The last piece of equipment in the helmet is the PCB.
We wrapped this in foam and inserted it into open space
between the pads in the helmet. We sealed it with electrical
tape to keep out as much water as possible; with more time
we could completely seal the system and make it waterproof.

D. Weight Analysis
 With our system in the helmet, we did not want to increase
the overall weight by more than 5%. We used a scale and
measured the original helmet and then the helmet with our
system in it. Using this we could characterize the weight of
our helmet. See table VII below for the different weights and
overall weight increase to helmet. The battery and its case is
what puts us over our requirement specification, but with
more time we could implement the guts of the battery and
shed the weight of its case. With the case gone we would meet
our specification.

ACKNOWLEDGMENTS
Team RCA would like to thank Holyoke Catholic High

School and the University of Massachusetts Amherst Football
team for supplying football equipment to our project. We
would also like to thank Professor Steven Rowson for
allowing us to use his risk function and speaking with us
about our project and his research.

REFERENCES
[1] CDC Injury Prevention & Control: Traumatic Brain Injury. (2012,

January 30). Concussion and Mild TBI [Online]. Available:
http://www.cdc.gov/concussion/ [Accessed Web. 17 Nov. 2012.]

[2] Health Day News. (2012, January 30). Many High School Football
Players Ignore Signs of Concussion: Survey [Online]. Available:
http://consumer.healthday.com/Article.asp?AID=669798 [Accessed Web.
5 Dec. 2012.]

[3] McCrea, M., T. Hammeke, G. Olsen, P. Leo, and K. Guskiewicz.
Unreported concussion in high school football players: implications for
prevention. Clin. J. Sport Med. 14:13–17, 2004.

[4] B. Wilner. (2012, June 7). NFL Concussions Mega-Lawsuit Claims
League Hid Brain Injury Links From Players [Online]. Available:
http://www.huffingtonpost.com/2012/06/07/nfl-concussion-brain-trauma-
lawsuit-players_n_1577497.html [Accessed Web. 17 Nov. 2012.]

[5] System and method for measuring the linear and rotational acceleration of
a body part, by J.J. Crisco, III and R.M. Greenwald. (2001, Oct 10).
Patent US6826509B2 [Online]. Available:
http://www.freepatentsonline.com/6826509.pdf [Accessed Web. 30 Sept.
2012.]

[6] Analog Devices, "ADXL78 Datasheet and Product Info.,"ADXL78: Â
Single-Axis, High-g, IMEMSÂ® Accelerometers. [Online]. Available:
http://www.analog.com/en/mems-sensors/mems-
accelerometers/adxl78/products/product.html. [Accessed Web. 17 Nov.
2012.]

[7] ATMEL. (2010, Nov.). ATmega16U4/32U4 Preliminary Datasheet.
[Online]. Available: http://www.atmel.com/Images/doc7766.pdf [Accessed
Web. 6 Oct. 2012.]

[8] Roving Networks. (2012, Oct.). RN-41 Datasheet. [Online]. Available:
http://www.rovingnetworks.com/resources/download/18/RN_41 [Accessed
Web. 16 Oct. 2012.]

[9] IDC – Press Release. (2012, November 1). Android device Marks Fourth
Anniversary Since Launch with 75.0% Market Share in Third Quarter,
According to IDC [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS23771812 [Accessed
Web. 17 Nov. 2012.]

[10] Analog Devices, "ADXL193 Datasheet and Product Info.,"ADXL193: Â
Single-Axis, High-g, IMEMSÂ® Accelerometers. [Online]. Available:
http://www.analog.com/en/mems-sensors/mems-
accelerometers/adxl193/products/product.html. [Accessed Web. 17 Nov.
2012.]

[11] P. Hood-Daniel. (2012, October 10). Microcontroller Tutorial. [Online].
Available: http://newbiehack.com/MicrocontrollerTutorial.aspx [Accessed
Web. 20 Oct. 2012.]

[12] HeKilledMyWire. (2011, January 5). Using the USART/serial. [Online].
Available: http://hekilledmywire.wordpress.com/2011/01/05/using-the-
usartserial-tutorial-part-2/#more-31 [Accessed Web. 26 Oct. 2012.]

[13] Sparkfun. (2011, Nov.). Bluetooth Mode – BlueSMiRF Gold. [Online].
Available: https://www.sparkfun.com/products/10268 [Accessed Web. 16
Oct. 2012.]

[14] Tamada, R. (2011). How to Connect Android device with PHP, MySQL
[online]. Available: http://www.Android devicehive.info/2012/05/how-to-
connect-Android device-with-php-mysql/ [Accessed Web. 16 Nov. 2012.]

[15] Rowson, S, et al. “Rotational Head Kinematics in Football Impacts: An
Injury Risk Function for Concussion,” Annals of Biomedical Engineering,
vol. 40, no. 1, pp. 1-13, Jan. 2012. [Accessed Web. 21 Sept. 2012.]

[16] Bell, M. (2012). Android device and Arduino Bluetooth Communication
[online]. Available: http://bellcode.wordpress.com/2012/01/02/Android
device-and-arduino-bluetooth-communication/ [Accessed Web. 16 Nov.
2012.]

[17] Crisco, J, et al. “An Algorithm for Estimating Acceleration Magnitude and
Impact Location Using Multiple Nonorthogonal Single-Axis
Accelerometers,” Journal of Biomechanical Engineering, vol.126, no. 1,
pp. 1-6, Dec. 2012. [Accessed Web. 3 Feb. 2013.]

[18] Sparkfun. (2012, Nov.). USB Battery Pack – 2000maH. [Online].
Available: https://www.sparkfun.com/products/11359 [Accessed Web. 4
Feb. 2013.]

TABLE VII
WEIGHT ANALYSIS OF RIDDELL SPEED HELMET

Helmet w/out our system

Weight (g)
1927

Official weight from
Riddell

Sensors, battery, protoboard 120
Helmet w/our system 2047

Battery unit 75
Empty battery case 30
Components in the case 45

Percent increase (with case) 6.2% (1.2% over spec)
Percent increase (without case) 4.7% (spec met)

