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Abstract—We introduce RCA (Real-Time Concussion Analyzer), 
a real-time system that will allow a football coach to remotely 
monitor the impacts a player experiences during a game.  This 
system will provide the likelihood that a player has experienced 
a concussion, allowing coaches to make more informed decisions 
pertaining to player safety.  RCA incorporates an array of 
accelerometers inside each player’s helmet.  The sensor data 
from each helmet is wirelessly transmitted to an Android device, 
where an application will query a player database on a server, 
and determine the likelihood of concussion.   

I. INTRODUCTION 
ONCUSSIONS in sports have become a growing concern in 
recent years, despite advancements in safety equipment. 

According to the Center for Disease Control and Prevention, 
a concussion is a type of traumatic brain injury, or TBI, 
caused by a bump, blow, or jolt to the head that can change 
the way your brain normally works. “While all concussions 
are serious, most occur without loss of consciousness.” [1] 
Recognition and proper response to concussions when they 
first occur can help prevent further injury or even death.  
Current concussion detection relies on a coach to constantly 
check a player’s reported symptoms after each impact.  They 
monitor a wide array of symptoms from memory to balance. 
However, many players will try to mask their symptoms [2], 
[3].  This problem is not localized to any age of player, 
though RCA is aimed at the high school level.  In June of 
2012, over 2000 former players filed a lawsuit against the 
NFL claiming that the league hid the link between football-
related head trauma and permanent brain injuries [4].  This 
lawsuit brought concussion awareness to the forefront of 
sports medicine.  

Preventing concussions in football seems to be an 
extremely challenging goal, but detecting them is slightly less 
challenging.  RCA is a system intended on detecting 
concussions in the hopes that a coach will remove an injured 
player before they may suffer any further damage.  However, 
a system such as RCA could possibly influence how the game 
of football is played.  If such a system was to be employed, 
players may find themselves removed from games more 
frequently.  This could lead to opposing teams targeting key 

players, knowing that the key player would have to be 
removed from the game after receiving a certain concussive 
force.  This problem has been addressed within the last 
decade by not only researchers but also private companies.  
There have been a few systems developed to address this, 
most notably the Head Impact Telemetry (HIT) System [5]. 
The HIT System takes a similar approach to this problem, 
utilizing an array of linear accelerometers with wireless 
transmission to an off-field base station computer.  This is a 
data collection system that lacks portability at the base station 
and is not cost efficient.  Providing only data on forces, there 
is no likelihood of a concussion presented.   

To begin the design of RCA, we developed system 
specifications by reviewing the current solutions and their 
limitations.  None of the current systems had a way to adapt 
for multiple sub-concussive impacts, which may be as 
dangerous as a single serious concussive impact.  With this in 
mind, RCA will not only have wireless transmit capability, 
but also have the capability for wireless receiving. From their 
data sheets, the combination of the sensor network, processor, 
and radio in the helmet is restricted to using 302 mA and 5 V 
[6], [7], [8].  This means RCA will have a maximum power 
of 1.51 W. The Android device has its own internal battery 
and is not included in this power analysis.  RCA is installed 
in a player’s helmet in such a way that the player will not 
notice the system.  There is a threshold setting in the 
microcontroller, imbedded in the helmet, to account for minor 
accelerations that are not related to impacts. In the event of 
an impact, this threshold will be broken and trigger 
transmission of the impact data to the Android device.  From 
the impact data, accelerations of all six sensors, the device 
will compute a resultant hit vector H.  This is a single vector 
representation for the acceleration of the head’s center of 
mass.  With the components of H, the device then calculates 
the probability of a concussion. Finally, the Android device 
stores the results to a player database.  The coach will receive 
an alert with the player’s name and number, as well as the 
probability of concussion and show the impact location.  This 
application on the device will have a user menu for the coach 
to add or remove players, as well as make notes and query the 
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data after the games. Table I shows a list of specifications. 

 

II. DESIGN 

A. Overview 
Our approach to this problem is to develop a rugged sensor 

network to be deployed in a helmet.  This network consists of 
six accelerometers, a microcontroller, a wireless radio, and a 
battery to supply power.  We have ruled out the use of 
gyroscopes and triple-axis accelerometers after speaking with 
Professor Steven Rowson from Virginia Tech.  Both of those 
sensors proved to be too technically challenging to 
implement, with the calibration and stability requirements of 
each.  Instead, RCA utilizes an array of single-axis 
accelerometers oriented towards the center of mass of the 
head.  This array provides a robust solution; if one sensor 
shifts the system will be less prone to error.  From the linear 
accelerations that these sensors collect, RCA calculates 
rotational accelerations, which are needed for the risk 
calculation. We decided on using an 8-bit microcontroller as 
our impact data processor instead of an FPGA or other 
means, due to our familiarity with these devices. 
Microcontrollers have the ability to interface with analog 
sensors, process information, and transmit data to other 
devices.  A Bluetooth radio is interfaced with the 
microcontroller, as this type of radio can easily communicate 
with an Android device.  Bluetooth provides a proof of 
concept, but with range limitations of these radios RCA is not 
a full scale product.  As mentioned previously, we have 
selected an Android device for our user interface, as Android 
is the most prevalent operating system for smartphones [9] 
and it supports open source programming. To store the data 
and player history, a server was developed with two separate 
databases, as to not overload the device’s memory.  We had 
also initially considered a base station type of approach with a 
receiver and a laptop, but with the portability requirement we 
decided to make the system as mobile as possible.  

RCA includes three main blocks: 
1) Impact Data Collection:  An array of sensors placed in the 
helmet, along with a microcontroller, Bluetooth radio and 
power supply.  Together, these devices detect an impact and 
transmit the data to be processed. 

2) Data Analysis:  This block is responsible for the 
calculations of risk, as well as storing and receiving the raw 
data and player information.  It communicates with the 
Android device and the backend server.  By having the data 
analysis preformed on the Android device, we minimized the 
processing done in the Impact Data Collection block.  This 
leads to a low-profile system, keeping the increase in helmet 
weight minimal. 
3) User Interface:  The user interface is an Android device.  
Here, the coach can input player rosters, retrieve information 
about the impacts a player has sustained, and receive real-
time alerts with the probability that a player has suffered a 
concussion.  This block communicates with other blocks via 
Bluetooth and the Internet. 

  By utilizing Bluetooth and Android devices we can keep 
the cost to a minimum, as most users will have a capable 
Android device.  These three main blocks are then divided 
among the team into four sub-blocks.  

 

B. Sensor Network and Power Supply 
 This sub-block of the Impact Data Collection block is 
concerned with measuring forces and powering the electrical 
components in the helmet.  Sensors were placed inside the 
helmet as close to the player's head as possible, for the most 
accurate measurements. From research at Virginia Tech [15], 
the maximum linear acceleration found that a player 
experienced over the two year study was slightly less than 200 
g’s. For our prototype we will not be inflicting such high g 
forces. Our initial sensors were the ADXL 193 [10] which 
had a tolerance of +/- 250 g, but due to the scalability, we 
decided to use more sensitive sensors. The sensors being used 
are micro-electro-mechanical systems (MEMS) 
accelerometers.  The ADXL78 [6] is a low powered, single-
axis, MEMS accelerometer, with a tolerance of +/- 70 g, and 
a sensitivity of 27 mV/g.   

 
 
Fig. 1.  This RCA Block Diagram shows the organization of the project. 
  

TABLE I 
SPECIFICATIONS 

Specification Initial Requirement   Actual Prototype 

Weight <5% increase (typically 102 grams) 120g 
Range 25 m 40m 
Response Time <2 s X 
Battery Life >5 hours >5 hours 
Cost <$5000 for full team of 52 players $5040 
Power Consumption 
Acceleration Range 
Sensitivity 
Durable Packaging 

<2 W 
+/- 70 g 
Only measure actual impacts 
Stable and waterproof 

1.37 W 
+/- 70 g 
Threshold of 10 g 
Stable &  
water resistant 
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 We spoke with an applications engineer from Analog 
Devices, the company that manufactures our sensors, and 
confirmed that each sensor needed to be tested for its own 
sensitivity value.  The sensor output was measured for two 
orientations. From the output, we directly calculated the 
sensitivity each sensor. Using the data sheet for the sensors 
[6], we determined the correct orientation to provide the most 
accurate results; the pin for Vdd is the axis of measurement. 
Our initial Vdd was 5046.2 mV. We placed each sensor so 
Vdd was pointing up, recorded its output, place the sensor so 
Vdd was pointing down, and recorded its output. Using 
Equation (1), we were able to characterize each sensor’s 
sensitivity. Table II, shows our results for each sensor.  

     (1) 

 With the sensors partially characterized, we strategically 
placed them in the helmet to capture the x-axis, y-axis, and z-
axis of a player's head; the axis of measurement is normal to 
the center of gravity. The placement of the sensors came from 
Joseph Crisco’s paper on locating the impact [17]. They 
explained where their sensors were placed, theta and alpha, 
and what angles gave the least amount of error.  To make our 
packaging easier, some sensors were moved by a few degrees. 

Table III and Fig.2 show the final placement of each sensor in 
our helmet in terms of theta and alpha.  
 

  
Fig.2. This relates the values from Table III to the position in the helmet; x-

axis is back to front, y-axis is left to right, z-axis runs up the spine to top.  

To finish characterizing the sensors we conducted another 
test to focus on response time of the sensor, primarily the time 
to peak acceleration. Throughout the test, we saw how the 
sensor responded to multiple impacts of the same force, 
impacts from different directions, and what kind of realistic 
forces we can apply on demo day.  Performing the same test 
multiple times also proves the sensor is functioning properly. 
Fig. 3 below shows a realistic impact reading from the 
oscilloscope, the peak acceleration happens within 2 ms. 

 Fig. 3.  This shows the peak acceleration of ADXL78. 
 

The test we conducted utilized a basic pendulum to 
generate an impact of known magnitude.  The sensor was 
placed, in a helmet, so it measured in the direction of the 
swinging pendulum.  The pendulum impacted the helmet 
giving us a measurement of the impact.  This measurement 
was sent to the processor and transmitted to a computer for 
analysis, which showed that we can repeatedly inflict an 
impact with the same magnitude. Once we understood how 
one sensor worked we built the network of sensors to go in 
the helmet.  
 The other aspect of this block deals with powering the 
system in the helmet. We conducted a power analysis to find 
the total energy our system consumed. Using the data sheet of 
every component in the helmet, we calculated the worst case 
power.  Then we converted the power into Joules. From 
Joules, we were able to find the total mAh that our system 
uses. Table IV below shows the worst case power analysis of 
our system. Most batteries are rated in mAh, so knowing that 
value helped to determine a type of battery to use; our initial 
thought was to use a coin cell battery because of it small 

TABLE IV 
WORST CASE POWER ANALYSIS OF OUR SYSTEM 

Device Voltage (V) Current 
(mA) Power (W)  

ATmega32 5 200 1  
Bluetooth 3.3 100 .33  
ADXL 78 5 1.3 .039 (6 sensors)  

    
Total Power (W) 

 
1.369 

   mAh Needed 1369 
     

TABLE II 
CHARACTERIZATION OF SENSORS SENSITIVITY 

Sensor Vdd Up (mV) Vdd Down (mV) Sensitivity (mV/g) 

0 2441.9 2497.1 27.6 
1 2467.2 2522.2 27.5 
2 2485.3 2540.6 27.6 
3 2479.0 2534.2 27.6 
4 2464.1 2519.7 27.8 
5 2480.2 2535.4 27.6 

 

TABLE III 
PLACEMENT OF THE SENSORS 

Sensor Theta (θH) Alpha (αH) 
0 0 20 
1 -90 15 
2 -180 20 
3 90 15 
4 75 50 
5 -69 50 

 

Z 

Y 
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weight and size. Unfortunately, the coin cells could not output 
enough current for our system to function properly, so we 
began looking into other options.  

We found a USB battery pack [18] that has 2000 mAh, 
outputs 700 mA peak at 5.5 V, and has an added bonus of 
being rechargeable. To be sure this battery would work; we 
analyzed our system’s typical energy consumption by 
measuring the changing voltage from a Laboratory DC power 
supply across a small resistor in series with our system. Using 
Ohms law we found the current, calculated power, and 
converted to energy.  
 Both the worst case power analysis and typical power 
analysis proved the battery would work, so we implemented it 
into our system. As a final test for the battery, we powered the 
helmet for more than five hours with the battery. During this 
time we measured Vdd, to be sure there was no fluctuation, 
then transmitted data, to be sure the correct data was being 
sent from an impact. We took these measurements every 15 
minutes. After five hours, Vdd remained constant and the 
data was still being sent correctly. With the sensors 
characterized and integrated into the helmet and the battery 
for the system working properly, the focus of this sub-block 
can now shift to final helmet packaging of the Impact Data 
Collection block. 

 

C. Impact Processing and Communication 
As a sub-block of the Impact Data Collection block, the 

impact processing and communication block is responsible 
for detecting an impact and then transmitting the sensor data 
to the User Interface block.  At the heart of this sub-block is a 
microcontroller that is used to process the incoming signals 
from the accelerometers described above.  Once the signals 
have been processed by the microcontroller they will be either 
discarded, or in the case of an impact, they are serially 
transmitted to a Bluetooth radio.  This radio communicates 
with the impact data to the user interface. 

The microcontroller selected for this block is the 
ATmega32U4 by ATMEL [7].  This microcontroller was 
selected for RCA after careful review of its features.  There 
are six analog signals coming from the sensor array that will 
need to be converted to a digital signal for transmission.  This 
microcontroller has 12, 10-bit ADC (analog to digital 
converter) channels, with six being used for the ADC 
conversions of the sensor signals.  The ATmega32U4 also has 
a programmable serial USART, which allows the 
communication between the microcontroller and the 
Bluetooth radio. This microcontroller also has 2.5 kB SRAM, 
which can be used to buffer the impact data before 
transmitting.  All this is in a TQFP package, which allows us 
to have a small circuit to fit inside the helmet.  

The programming of this microcontroller in C is familiar, 
as we have use a similar 8-bit AVR microcontroller, the 
ATmega32, in previous course work. There are many features 
of this microcontroller that we utilize for RCA: the ADC, 
USART, Timers, and Interrupts.  While we had previous 

course work, we found online tutorials essential in 
configuring some elements of the ATmega32U4 [11], [12].  
We use an external 16 MHz clock so that we can utilize the 
fastest prescaler of the ADC.  To increase throughput, the 
granularity of the ADC was set to have 8-bits of resolution, 
thus the outputs range from 0-255.  With 5 V supply, each 
incremental value of the ADC output carries a weight of 17.6 
mV.  With the sensitivity of the chosen accelerometer, 27 
mV/g, this leads to a sample granularity of 0.7 g’s per ADC 
value.   

Initially the design for communication was going to be 
XBee radios, for the full range of 100 m, but due to our 
decision to have a scaled down prototype we decided to use 
Bluetooth.  The Bluetooth radio selected for this block is the 
BlueSMiRF Gold by Sparkfun [13], which utilizes the Roving 
Networks RN-41 Bluetooth module [8].  This Bluetooth radio 
is a class one Bluetooth device with an advertised range of 
approximately 100 m.  We found this range to be quite 
exaggerated once the device was configured, and could only 
connect at a maximum range of 40 m.  This radio is 
Bluetooth version 2.1+EDR with built in error correction for 
the 8-bit packet transmission and 128-bit encryption.  This 
module has an advertised maximum data rate of 240 Kbps. 

To interface this radio with the microcontroller, we first 
had to initialize the USART feature within the ATmega32U4.  
Once we configured the Bluetooth radio and microcontroller, 
we tried to read the serial stream on a laptop terminal 
window.  We could communicate between the microcontroller 
and the laptop over Bluetooth, although the symbols were 
being distorted.  To fix this issue, the baud rates on both 
devices were synchronized at 9600.  

Once we completed the basics of this sub-block, an 
experiment was conducted to determine the accuracy to which 
the user can receive the sensor data.  The output of the sensor 
was measured directly with an oscilloscope.  Simultaneously, 
the sensor data was recorded on the laptop after the Bluetooth 
transmission.  From this experiment, we were able to learn 
that our sample rate was too low, 166.7 Hz. We had 
conducted measurements of the sensor directly with an 
oscilloscope and found that the average response time to 
reach peak acceleration was approximately 2.5 ms, 400 Hz.  
This corresponds with the specification in the accelerometers 
data sheet for the 2-pole Bessel filter at the output, stating 
that the 3 dB cutoff is at 400 Hz.  By enabling double speed 
operation of the USART, optimizing the baud settings of the 
ATmega32U4 and the BlueSMiRF, buffering the data before 
transmitting, and modifying the configuration of the ADC 
code, we were able to achieve a sample rate of 1.5 kHz for 
each sensor. This sample rate is above the Nyquist rate of 
each sensor.   

Upon completion, Impact Processing and Communication 
sub-block was tested to ensure accurate sampling.  The initial 
results from our experiments using the sensor proved to be 
misleading, as they are not true sinusoids and do not have 
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predictable amplitudes.  To fully test this block, RCA was 
removed from the helmet and sensor 0 was replaced with a 
sine wave of 333 Hz, 2V peak-to-peak amplitude with a 1V 
offset from a function generator.  Similarly, sensor 1 was also 
removed and replaced with a square wave of the same 
parameters as the sine. This frequency was chosen as it 
represents the typical impact duration measured with a single 
sensor and the oscilloscope.  

This experiment consisted of sampling ADC channels 0 
and 1 to try to accurately sample the square and sine waves 
respectively.  It can clearly be seen from the initial results that 
when sampling 2 channels, each at 4.5 kHz, the system could 
not accurately sample; in fact the two functions were being 
combined, see Fig.4. 
 

 
Fig. 4.  This shows the initial ADC sampling a sine wave incorrectly. 
 
 To solve this issue we had to input even simpler functions 
than the sine and square wave.  We used a 3V DC signal on 
channel 0 and a 1V DC signal on channel 1.  Even these 
values would sometimes be sampled incorrectly, in a 
repeating manor.  This led us to research more into the 
sample and hold times of the ADC.  The data sheet says that 
the ADC takes 13 clock cycles to complete a conversion.  
However, after careful review of this section, we found that 13 
clock cycles was the ideal time but there was a variance to 
this time that the data sheet did not have quantified. 
 The solution to this issue was to rewrite the ADC sampling 
code to utilize a more efficient waiting period.  By using an 
interrupt vector in the microcontroller, instead of a while 
loop, we were able to obtain accurate samples.  The interrupt 
vector triggers only when a conversion is complete, and hence 
ready to be accurately processed.  In that vector the code then 
buffers that result and starts the next conversion.  Again the 
square wave and sine wave were the only channels being 
sampled at 4.5 kHz each.  This time the samples fit the sine 
wave.  The final test was to sample both the sine and square 
functions, along with the remaining 4 sensors, effectively 
reducing the sample rate of each to 1.5 kHz.  Again, the sine 
wave sample points fit the expected curve, see Fig. 5. 
 

 
Fig. 5.  Sine wave being sampled correctly at 3 sample rates. 
 
 After proving the microcontrollers accuracy, the final 
portion of the code to this block was addressed.  The 
threshold triggering was implemented to avoid continuously 
streaming data to a device, a necessary feature with the 
number of players on the field at any time.  The threshold for 
an impact event was selected to be 10 g’s after reviewing the 
research from Virginia Tech [15].  This is achieved by 
continuously sampling the ADC and checking the force 
measured at that time instance.  If any sensor samples are at 
or above this threshold, the microcontroller starts a timer and 
then samples each sensor in a continuous loop starting with 
sensor 0, incrementing in order.  Each value is buffered 
within the SRAM until the timer reaches 50 ms, a time 
chosen based on osciliscope readings from a single sensor 
impact and verified with research [15].  Once the timer 
reaches 50 ms, another interrupt vector triggers, in which the 
buffer is emptied one sample at a time and transmitted in 
order.  All the counters are reset and RCA goes back into 
monitoring mode to await the next impact. 

D. Data Analysis 
 The purpose of this block is to determine the probability of 
a concussion for a specific player based on the hits the player 
has taken.  It is broken into two main parts, the database and 
the risk algorithm.  The database stores the raw accelerometer 
data, player information, and the hit vector H.  The risk 
algorithm takes in sampled points from each accelerometer 
and interpolates on the data points.  The algorithm calculates 
the hit vector at every point and selects the largest magnitude.  
The algorithm calculates risk using the resultant vector which 
it stores in the database.  Lastly, the algorithm queries the 
database for hit vectors to calculate the cumulative risk.  Once 
the risk algorithm was written, it was tested using black box 
testing methods.  The data processing and storage, acts as the 
backbone for the Android application, which displays the risk 
of a concussion for each hit and the cumulative risk. 
 The database is a MySQL, My Structured Query Language, 
database that is on a remote server.  The database is 
controlled by PHP scripts, which can connect, read, and write 
to the database [14].  The risk algorithm uses the PHP scripts 
to store the hit vector, player name, player age, player 
number, as well as the raw accelerometer data into the 
database.  The hit vector and raw data tables in the database 
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provide a time stamp for each entry.  With all this 
information stored into the database, the risk algorithm [15] 
can use this information and professionals can see data to 
help diagnose a concussion. 
 To continue developing the risk algorithm, we needed a 
way to correlate linear acceleration to probability of 
concussion.  We found a study [15] done by Steve Rowson, a 
professor of the School of Biomedical Engineering & 
Sciences at Virginia Tech.  Rowson performed a study on 
concussive impacts by equipping 314 collegiate players’ 
helmets with the HIT System, which consists of six 
accelerometers and calculates a resultant linear head 
acceleration at the CG, center of gravity, of the head.  Also, 
21 players’ helmets were equipped with the 6DOF, Six 
Degrees of Freedom, system that had twelve accelerometers 
instead of six.  The 6DOF is able to measure linear and 
rotational acceleration.  The study had monitored players 
between 2007 and 2009 and noted when players were 
diagnosed with a concussion [15]. 

In this study an equation was derived that converts linear 
acceleration to rotational acceleration from the equations of 
motion modeling force acting on a head [Equation (2)].   
 

α = m ax2 + ay2

I
d

 
In Equation (2), α is rotational acceleration, m is the mass of 
the head, ax is the peak acceleration along the anterior-
posterior axis of the head, ay is the peak acceleration along 
the medial-lateral axis of the head, I is the moment of inertia 
of the head, and d is the perpendicular distance from the head 
CG to the impact vector [15].  The unknown variables of m, 
d, and I were determined through a regression model analysis 
of recorded 6DOF acceleration data and confirmed with 
laboratory validation experiments.  A least squares technique 
was used to equate (m*d/I) to 6.48 m-1 [15].   
 The study also developed an equation that correlated 
rotational acceleration to risk.  To develop the risk equation, 
the study performed a statistical analysis on occurrences of 
sub-concussive impacts and concussive impacts that were 
reported.  A logistic regression analysis based on weighted 
sub-concussive and concussive head acceleration distributions 
were used to express risk as a function of rotational head 
acceleration [Equation (3)] [15].   

 
In Equation (3), α is rotational acceleration; c1 and c2 are 
regression coefficients.  The regression coefficients were 
determined using a generalized linear model technique.  The 
c1 coefficient was calculated to be -12.531, and the c2 
coefficient was calculated to be 0.002 [15].  

After reviewing his study and speaking with Steven 
Rowson over the phone, the risk algorithm was developed to 
model the equations derived in the study.  First, the algorithm 
must calculate the hit vector that is used to find ax and ay 
from Equation (2).  The algorithm receives the raw 

accelerometer data and has to interpolate each sensor graph.  
In order to do this, the algorithm uses a sliding quadratic 
interpolation to create an accelerometer graph from every 
three accelerometer sample points.  The algorithm then 
calculates the hit vector at every time interval along the 
accelerometer graphs [Equation (4)]. 

 

 
Equation (4) is a least squares model derived to calculate the 
magnitude, alpha and theta, of the hit vector from multiple 
nonorthogonal single axis accelerometers [17].  In Equation 
(4), alpha is the angle of elevation and theta is the angle of 
azimuth.  The coefficients in Equation (4) with a subscript “i” 
represent components of an accelerometer, and the 
coefficients with a subscript “H” represent components of the 
hit vector.  To perform this calculation, the algorithm breaks 
the equation into known and unknown variables to create 
three different matrices.  The first matrix, C, is composed of 
the parts in Equation (4) involving locations of each 
accelerometer.  The second matrix, X, is composed of the 
parts in Equation (4) involving the hit vector components.  
The third matrix, A, is composed of the value for each 
accelerometer.  The algorithm computes the solutions for 
matrix X using matrix C and matrix A [Equation (5)].   

 
The algorithm uses the solutions of matrix X, a, b, and c, to 
solve the hit vector components in matrix X [See Equation 
(6)].      
          
After the hit vector is calculated at every time interval, the 
correct time to calculate the hit vector is selected.  The 
algorithm looks for the time when the magnitude of the hit 
vector is maximized to select the corrected hit vector data.  
Once the hit vector is selected, the x and y components are 
calculated from the hit vector.  The x and y components are 
inserted into ax and ay in Equation (2), respectively.  The 
rotational acceleration produced from this data is then used to 
calculate risk with Equation (3). 

When the user requests the cumulative risk, the algorithm 
queries the database for all of the peak linear accelerations for 
that player.  The algorithm then converts the hit vector that 
was returned from the query into a rotational acceleration 
[Equation (2)].  The rotational acceleration is then used to 
calculate a risk [Equation (3)].  The risk algorithm then uses 
a weighted average to return the cumulative risk for the user 
interface code to display.  This average of risk is currently our 
way to incorporate the possible dangers of multiple sub-
concussive impacts; this will be subjected to change with 
future research. 
 The entire risk algorithm was black box tested by 
developing a Java test program that would parse input text 
files containing simulated impact data, clear the database, 
and run the impact data through the risk algorithm.  The Java 

(2) 

(3) 

(4) 

(5) 

(6) 
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test program then writes the rotational accelerations and risks 
to output text files.  A python script was used to generate this 
simulated impact data.  Another python script was written to 
parse the output text files, store the calculated rotational 
accelerations, and calculated risks into an excel file.  The 
script also stores the expected rotational accelerations and 
risks into the excel file.  The results of this test were graphed; 
they matched the graph of the risk function from Rowson’s 
study [Equation (3)]. 
  

E. User Interface and Communication Block 
This block’s purpose is to display concussion data to the 

user and allow user input to control the application and 
system settings. The two main parts of this block are the 
Android application and the application’s interface with the 
Android device’s internal Bluetooth module. Currently, the 
ability for the application to receive a full data set and analyze 
the information is operational. The application then displays 
the impact’s magnitude, location, and risk of injury in a pop-
up notification that is shown to the user, shown in Fig.6.  The 
application uses the default display as its idle screen, and 
displays the last few hits that were detected. The pop-up 
occurs on the idle screen, which gives the user the option to 
inspect the impact information in depth. In order to wrap up 
this block of the project, a 
method to accept user 
settings and a visual 
improvement of the 
application will be executed. 

The application is written 
using Java in the Android 
programming language, 
utilizing the Android 
Development Tools plug-in 
for Eclipse IDE. For 
programming, we took 
advantage of prior coding 
experience and the 
development tools available 
to write the application. The 
application currently has six 
main activities that function 
together to handle the data 
and provide meaningful 
interpretations. First is the main screen activity, where the 
user can connect and disconnect to the Bluetooth module, 
housed in the helmet, display previous hit history, and 
monitor for newly detected impacts.  

The next activity is the graph view, which allows the user to 
view a plotted graph of the received acceleration data for each 
of the six accelerometers. This graph activity for a single 
accelerometer, shown in Fig. 7. comes from an open source 
graphing library that is available for use in Android 
development.  

Another activity in the application is the cumulative hit 
histogram display. This activity can be displayed upon the 

user’s request, and can show 
a histogram of hits for each 
player. The histogram was 
recommended by staff of the 
University’s Athletic 
Department as a tool to 
observe the effects and trends 
as a result of multiple hits at 
varying intensities. The 
cumulative risk activity, 
which retrieves the impact 
data from the server and 
shows a comprehensive 
analysis of the player, 
displays their impact history, 
and cumulative risk of 
concussion. It is from this 
display that a user can make 
a call to the histogram 
activity described above to 
see information of multiple hits. 

The user settings screen is a simple but important piece to 
the application that allows the user to set and change different 
options within the application, such as a coach vs. trainer 
view. Throughout the development of the application many 
bugs were fixed that caused reliability issues and forced the 
app the close. The functionality and reliability of the 
application has been improved greatly and the final focus of 
the application will be on improving its ease of use and 
aesthetic appearance. Finally, the application’s Bluetooth 
interface was created in reference to the tutorial on Android 
device and Arduino Bluetooth Communication [16]. This 
tutorial provided the necessary code examples to detect, 
connect, and disconnect an Android to an Arduino. We were 
able to adapt this code to connect to our ATmega 
microcontroller and interface it with its USART capabilities. 

As we tested the Bluetooth module for the distance, as 
outlined earlier in the document, we also took that 
opportunity to test the robustness of the Bluetooth data 
transfer itself. We observed that at distances before losing 
connection, we saw a significant drop in the rate in which 
data was being acquired. The limitation of the Bluetooth 
device has proven to be the main factor in restricting the 
range that our system will perform. The response time of the 
data transfer across the Bluetooth and through the data 
processing unit was measured to characterize the system 
response time. The average response time was measured to be 
X ms, which describes the time it takes for the application to 
receive all data point via Bluetooth and perform the necessary 
computations to make that data meaningful and display it. 
This response is acceptable and if we make some adjustments 
to the code for efficiency, it will be sufficient time to warn a 
coach and remove a player before they begin another play. 

III. PROJECT MANAGEMENT 
Utilizing effective tools, such as timelines, open lines of 

Fig. 6. Impact notification screen 

Fig. 7. Accelerometer graph 
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communication, and a Gantt chart, the Impact Data 
Collection Block is functioning properly.  An open line of 
communication is proving to be are most important tool as we 
troubleshoot the Data Analysis Block.  

The team members of RCA compliment each other very 
well, and there is a great group dynamic.  Every member 
brings something unique to the table and all help each other 
out and try to become involved with every facet of the project. 
On more than one occasion a team member may have been at 
a low point in their workload and has helped offset another’s.  
We have regular team meetings once per week, and one team 
meeting with our advisor, Professor Hollot per week. Scott 
Rosa is the CSE of the group and is the data processing and 
server expert, as well as maintains the website.  Kenneth Van 
Tassell is the Android device programmer of the group, and 
working on the wireless communications on the Android 
device end.  Justin Kober is responsible for the sensor 
network and power for the Impact Data Collection block, as 
well as validation testing of the project.  Tim Coyle is 
responsible for the microcontroller and wireless transmission 
of data to the Android device, and is also the team manager.  

IV. CONCLUSION 
Since MDR, we have integrated the sensor array into the 

helmet, which is now sampled by the microcontroller and 
powered by the battery. The sample rate has been optimized 
and threshold triggering has been implemented. The user 
interface will need to be configured to input players and recall 
their information at a user’s request.  The possibility for two-
way communication between the Android device and helmet 
exists, but for this iteration of RCA it will not be 
implemented due to the project deadline and debugging 
issues.  

The majority of the project is completed, though through 
integration we have found issues that need to be resolved.   
The Impact Data Collection Block is constructed and 
produces accurate results; all that remains is final packaging.  
The User Interface Block has the basic GUI design and 
underlying structure to interface with the other blocks.  The 
application will be refined and have other menus and options 
added for a better user experience.  The Data Analysis Block 
has been implemented with an updated algorithm to increase 

speed but needs optimization for accurate results.  
Currently, upon impact, RCA transmits the data to the 

Android device where the user will see the correctly measured 
force and corresponding risk.  Between now and Demo Day 
we will be fixing the data analysis issues, characterizing the 
system error, revising the Android application, and 
conducting validation testing of our complete system.  We 
plan on reaching all of our goals for RCA by continuing to 
stay ahead of deadlines and keep communication lines open 
with the team and advisor. 

APPENDIX 

A. Application of Engineering 
 There are many areas of math, science, and engineering 
that apply to RCA, most notably: data structures and 
algorithms, classical mechanics, circuit analysis, electronics, 
computer networks, hardware organization, communications, 
and signal processing.  For our software development portion 
of RCA the server, databases and Android development were 
all done in Java, while the software for the microcontroller 
and Bluetooth control are written in C.  We have exposure to 
these programming languages through the coursework in 
ECE 122, ECE 242, ECE 353 and ECE 354.  The sensor 
network and the power regulation circuitry design were both 
essential in our data collection block.  These elements of RCA 
would not have been implemented correctly had we not had 
previous knowledge of circuit design, which we gained in 
courses like ECE 211, ECE 212, ECE 323 and ECE 324.  
Courses like ECE 313, ECE 314, ECE 333, ECE 374 and 
ECE 563 helped us to better understand the fundamentals 
needed for successful wireless communication. 

B.  RCA Cost 
 Below is our initial cost analysis for the project.  All of the 
costs are in the helmet network, as this system assumes the 
user already has an android device. 

 
TABLE VI 

HELMET NETWORK COST 
Device Model Unit Cost Total
Accelerometer ADXL78 $5.58 $33.48 analog cost at 1000ct
Microcontroller ATmega32U4 $5.56 $5.56 sparkfun cost at 100ct
BlueTooth Modem BlueSMiRF Gold $51.96 $51.96 sparkfun cost at 100ct
BlueTooth Module RN-41 $19.96 sparkfun cost at 100ct
PCB $33.00 $4.13 4PCB.com 60 sq in
Estimated Costs
Misc Hardware Caps, Clock, Resistors $1.80 DigiKey

Total Cost $96.93
X 52 Players
 = Helmet Network Cost Per Team $5,040.10  
 

C. Packaging 
 The most important aspect of packaging our system into a 
helmet was making the system “invisible” to player wearing 
the helmet. We wanted to keep the helmet as normal as 
possible so we used the padding and open space to house our 
system. Wherever the sensors needed to be, we inserted them 
into a pad so Vdd was pointing out the back of the pad. The 

TABLEV 
RCA VS. COMPETITORS 

Specification RCA HITS 

Imbedded Sensor Network in Helmet Yes Yes 
Simple User Interface (Android) Yes No 
Accurate Data Collection Transmission Yes Yes 
Reliable Data Analysis Partial Yes 
Real-time Solution (alerts) Yes No 
Two-way Communication Capable Yes No 
Cost Efficient  Yes No 
Full Range of Field No Yes 
Waterproof No Yes 
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pad provides protection from the force of impact and stops the 
sensors from contacting the player’s head. The pads will be 
sealed with glue to hold them in place and keep out water 
near the end of the project. The battery has its own case to 
provide protection from the force of impact. To install it in 
the helmet we cut a slit in a pad, the width of the battery, and 
inserted the battery to stop it from contacting the player’s 
head. The last piece of equipment in the helmet is the PCB. 
We wrapped this in foam and inserted it into open space 
between the pads in the helmet. We sealed it with electrical 
tape to keep out as much water as possible; with more time 
we could completely seal the system and make it waterproof.  
 

D. Weight Analysis 
 With our system in the helmet, we did not want to increase 
the overall weight by more than 5%. We used a scale and 
measured the original helmet and then the helmet with our 
system in it. Using this we could characterize the weight of 
our helmet. See table VII below for the different weights and 
overall weight increase to helmet. The battery and its case is 
what puts us over our requirement specification, but with 
more time we could implement the guts of the battery and 
shed the weight of its case. With the case gone we would meet 
our specification. 
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TABLE VII 
WEIGHT ANALYSIS OF RIDDELL SPEED HELMET  

 
Helmet w/out our system 

Weight (g) 
1927 

 
 

Official weight from 
Riddell 

Sensors, battery, protoboard 120  
Helmet w/our system 2047  
   
Battery unit 75  
Empty battery case 30  
Components in the case 45  
   
Percent increase (with case)  6.2% (1.2% over spec) 
Percent increase (without case)  4.7% (spec met) 

 
 

 


