Final Project Review

Team Toccando April 20, 2016

Department of Electrical and Computer Engineering

Advisor: Professor Kelly

Toccando

Department of Electrical and Computer Engineering

Advisor: Professor Kelly

Toccando: A Tactile Feedback System

Problem

 With the invention of touch screens, much of the tactile user interface has been lost

Solution

 Tactile display that provides distinctive haptic feedback to the user

Technology

 Use of vibration to dynamically create low and high friction areas that are experienced as force on the user's finger when the finger is moving.

Design

Four Main Components:

- Android Phone
- Microcontroller
- Amplifier
- Glass with piezos

Why Toccando?

Adding another dimension

• Touch!

Bringing technology closer to reality

• The shape and texture of objects is important to the way we interact with the physical world

Education

- Allows the development of educational tools such as interactive maps
- Teaching the visual impaired; Shapes, Objects, and Letters

Marketing

Clothing texture could be displayed to the consumer

Applications of Tactile Feedback in Maps

Maps

- Dimensionality of a map is modular, 2d or 3d options
- Allows visually impaired to experience electronic maps
- Gives tactile cues when visual cues may be distracting (eg. when driving)

Education

 Introduces letters to the visually impaired

Our Block Diagram

Glass Touch Surface (Primary I/O)

Working Configuration

- 120mm x 92mm x 1.1mm soda lime
- 4 Piezos- 35mm OD x 25mm ID brass backed Murata 7BB-35-3
- Presently running at 37 kHz with variable PWM
- Provides a tactile sensation to the user
- Power output is ~1W

Phone (Digital Interface)

Application/User Interface

- User Interface is able to recognize finger positioning
- Fast and smooth usability
- Multi-threaded socket listening

Response Map

- Rudimentary Geometry (Basic Shapes)
- Example Map Interface
- Letters

Ŷ	┥× 🚹 📶 🖻 10:30			
Toccando				
	inao			
Off				

Control (Microcontroller)

IOIO OTG Board

- Operating Voltage Range of 2.2V to 3.6V
- Lightweight, Energy Efficient
- Capable of both host and accessory modes (USB OTG)

Control (Signal Generator)

PIC32MX220F032B

- Signal Generator 37 kHz with variable PWM to achieve desired waveform
- 32 bits vs. 8 bits of the ATmega32
- Higher frequencies than the originally proposed ATmega32

Power

• The circuit draws 200mA at 5V

 $(200mA) \cdot (5V) = 1W$

- 1W of power is required
- Battery has a capacity of 5000mAh $\frac{5000mAh}{200mA} = 25hours$
- 25 hours of runtime

- > Automatically detects your devices and provide optimal current
- > Automatically stops charging when the devices are full
- Charge 2 devices at one time

Challenges and Solutions

Challenges

- Not Enough Power
- Trouble finding correct frequency
- Interfacing the microcontroller with the phone
- Generating the correct signal from microcontroller

Solution

- Inductor wrapped with magnetic wire acting as a transformer
- Found resonance frequency with salt experiment
- IOIO Board and OTG cable allows for the phone to be host mode
- Used the PIC32MX220F32B to solve timing problems with waveform generation

Individual Responsibilities

Esther Wolf (Oo)

• Responsible for interfacing the hardware, software and top level of the application

William Young (Oo)

 Responsible for hardware testing, signal generator (PIC32MX220F032B), and amplifier subsystems

Ygorsunny Jean (Oo)

 Responsible for power system, touch display subsystem (glass and piezos) and web content management

Casey Flanagan (Oo)

Responsible for hardware testing, case design/fitting, and final construction

FPR Deliverables

Bringing Everything Together

- Increase vibrational feedback
- Meet power requirements
- Build a case to fit all necessary components
- Finish map application
- Fully interface the hardware and top level of the application

Costs

Development		Production (1000)	
Part	Price	Part	Price
IOIO Board	\$39.95	*IOIO Board	N/A
Piezos (4)	\$4.72	Piezos (4)	\$2.18
M8297-ND (Inductor)	\$1.10	M8297-ND (Inductor)	\$0.52
IXDN604PI Driver	\$1.80	IXDN604PI Driver	\$1.80
Voltage Regulator	\$0.75	Voltage Regulator	\$0.75
8 MHz CLK	\$1.00	8 MHz CLK	\$0.112
Battery	\$25.99	Battery	\$25.99
3D Case	\$36.83	3D Case	\$30.00
PIC32MX220	\$3.10	PIC32MX220	\$3.10
IRF520NPBF	\$1.14	IRF520NPBF	\$0.525
Misc. (RC)	\$0.40	Misc. (RC)	\$0.04
Total	\$117	Total	\$64

Thank You