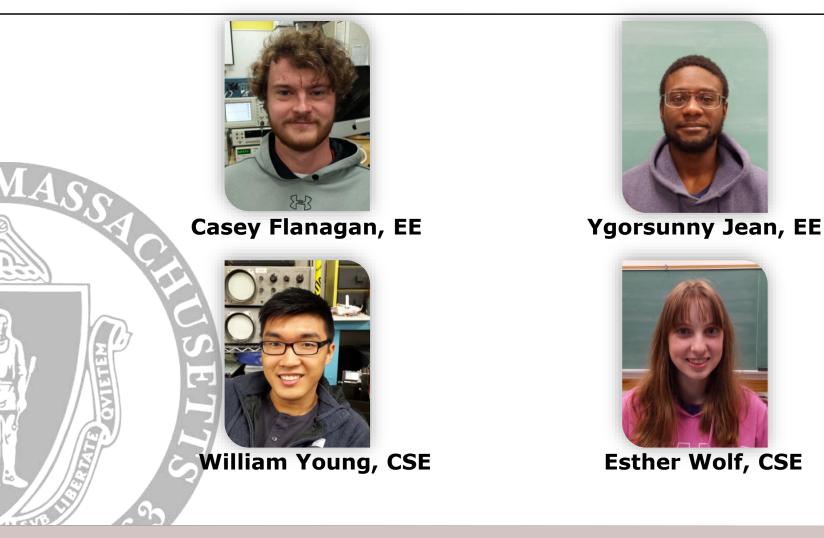
Comprehensive Design Review



Team Toccando March 9, 2016

Department of Electrical and Computer Engineering

Advisor: Professor Kelly

Toccando

Department of Electrical and Computer Engineering

Advisor: Professor Kelly

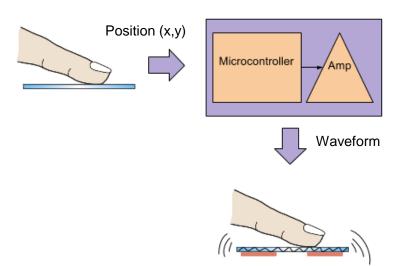
Toccando: A Tactile Feedback System

Problem

 With the invention of touch screens, much of the tactile user interface has been lost

Solution

 Tactile display that provides distinctive haptic feedback to the user


Technology

 Use of vibration to dynamically create low and high friction areas that are experienced as force on the user's finger when the finger is moving.

Design

Four Main Components:

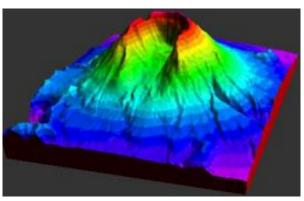
- Android Phone
- Microcontroller
- Amplifier
- Glass with piezos

Why Toccando?

Adding another dimension

• Touch!

Bringing technology closer to reality

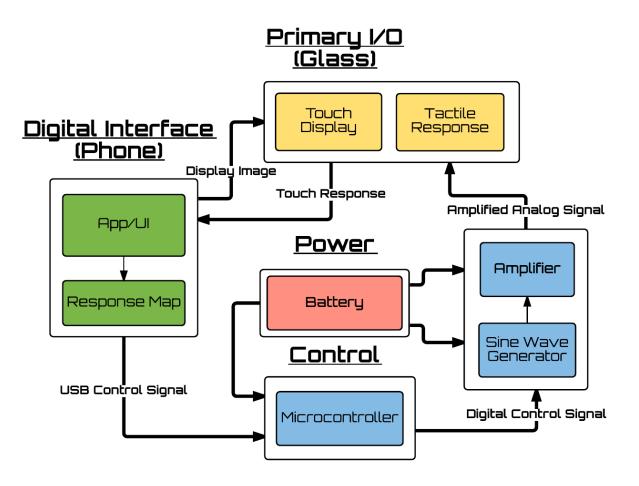

• The shape and texture of objects is important to the way we interact with the physical world

Education

Allows the development of educational tools such as interactive maps

Marketing

· Clothing texture could be displayed to the consumer

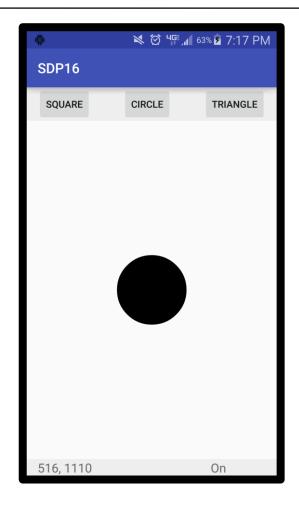

Applications of Tactile Feedback in Maps

Maps

- Dimensionality of a map is modular, 2d or 3d options
- Allows visually impaired to experience electronic maps
- Gives tactile cues when visual cues may be distracting (eg. when driving)
- Could be used to add interactivity to maps used in education, tactile feedback could add more information, like topography

Our Block Diagram

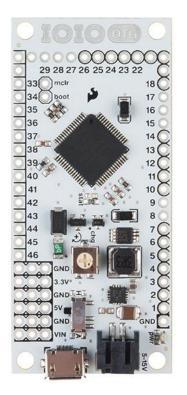
Glass Touch Surface (Primary I/O)


Present Configuration

- 165mm x 130mm x 1.1mm soda lime
- 5 Piezos- 35mm OD x 25mm ID brass backed Murata 7BB-35-3
- Vibrations at low frequencies (50-500 Hz)
- Presently running at 400Hz
- Provides a tactile sensation to the user
- Power output should be ~1W

Phone (Digital Interface)

Application/User Interface


- User Interface is able to recognize finger positioning
- Fast and smooth usability
- Multi-threaded socket listening **Response Map**
- Rudimentary Geometry (Basic Shapes)

Control (Microcontroller)

IOIO OTG Board

- Operating Voltage Range of 2.2V to 3.6V
- Lightweight
- Energy Efficient
- Capable of both host and accessory modes
- Supports Control, Interrupt, Isochronous and Bulk Transfers

Control

Sine Wave Generator

- 10% Distortion
- 10 Volts peak to peak with a 5V DC offset

Amplifier Circuit

 Prototyping with a transformer to drive the piezos at low frequencies (around 400Hz)

Power

Design Challenges

- 2 devices need power
- 5V input required for microcontroller
- 15V input required for the sine wave generator

Current Implementation

- We have a 5V input, using onboard power supply, to feed microcontroller
- We are currently using an onboard power supply, to supply the 15V input of the sine wave generator.
- We plan on using a 5V battery, in conjunction with a boost converter, to get the full voltage range necessary for the sine wave generator (15V)

FDR Deliverables

Bringing Everything Together

- Increase vibrational feedback
- Meet power requirements
- Build a case to fit all necessary components
- Finish map application
- Fully interface the hardware and top level of the application

Individual Responsibilities

Esther Wolf (Oo)

• Responsible for interfacing the hardware, software and top level of the application

William Young (Oo)

 Responsible for hardware testing and sine wave generator subsystem

Ygorsunny Jean (Oo)

 Responsible for power system, touch display subsystem and web content management

Casey Flanagan (Oo)

 Responsible for hardware testing and amplifier circuit subsystem design

Thank You