E-Space

Spencer Pietryka, Steve Bevacqua, Jonathan Scharf,

Magnetic Resonant Wireless Charging

- Wireless transfer of power to charge devices or directly power devices
- Magnetic resonance charging can power multiple devices at once with high efficiencies
- Eliminate reliance on failure prone cables, connectors, and batteries

Our Application

- Our goal is to design a product that will make it easy for people to charge their phones without ever thinking about wires in their everyday routine
- Construct a charging pad and receiving phone case to allow for resonance wireless charging in a typical home or office

Previous System Requirements

Input Specifications	120 VAC at 60Hz
Frequency	13.56 MHz
Distance/Range	1.5 m
Minimum Output Power	5W
Minimum Wireless Transfer Efficiency	≥70%
Minimum Total System Efficiency	≥50%
Maximum Electric Field	60.75 V/m
Maximum Magnetic Field	1.20 A/m

Revised System Requirements

Input Specifications	120 VAC at 60Hz
Frequency	6.78 MHz
Distance/Range	0.25m
Minimum Output Power	3.3W
Minimum Wireless Transfer Efficiency	≥40%
Minimum Total System Efficiency	≥10%
Maximum Electric Field	121.5 V/m
Maximum Magnetic Field	2.40 A/m

Previous Block Diagram

Steve

Projected Block Diagram

Steve

Jon

Transmitting and Receiving Coils

Q = 1000:

- Q factor differentiates between loosely and tightly coupled systems
- Needs high Q factor
- Higher quality factor ensures farther axial distance before drop-off
- Dependent on ratio between transmitter and receiver coils

Figure 1 Typical arrangement of an inductively coupled power transfer system

Transmitting and Receiving Coils

Current Coils:

- Flat Coil Design
- 8 AWG
- Two Turns
- Q ~ 1800 at 6.78 MHz
- Receiver Coil: D=35 cm
- Transmitter Coil: D=42 cm

$$R = \frac{2\pi aN}{\sigma 2\pi r\delta} = \frac{aN}{\sigma r\delta}$$

Oscillator

- Colpitts Oscillator
- Can use transmitting coil as inductor
- Shifts frequency need buffer stage

Voltage Buffer

- Oscillators don't function well when loaded
- Buffer presents high input impedance and low output impedance
- Voltage Gain: 1.8
- Current Gain: 25.8

Voltage Buffer

- MOSFET: IRF540
- BJT: 2N3053

Demonstration

- Created transmitter and receiver coils.
- Use signal generator as power source and oscillator.
 - Fed to voltage buffer
- Illuminate LED over a distance of a half a meter.
 - Red LED (V_f =1.8-2.2V, I_f =20 mA)
 - P≈ 0.04W to light the LED

Test Results

Team Responsibilities

	December	January	February	March	April
Jon Scharf	Coil Redesigr	n, Phone Case			
		Impedance	e Matching		
				PCB Design	
Steve Bevacqua		Increase Power			
		Oscillator Design			
			Rec	Rectifier, Voltage Regulation	
Spencer Pietryka	SWR N	Neasure, Control Algo	rithms		
				Repe	eater
		Control Circuitry			

CDR Deliverables

- Demonstrate system output: 3.3 W over 10 cm
- Implement tuned impedance match network for 10 cm
- Final coil sizes constructed
- Effectively measure SWR on line

Demo

Questions and Comments