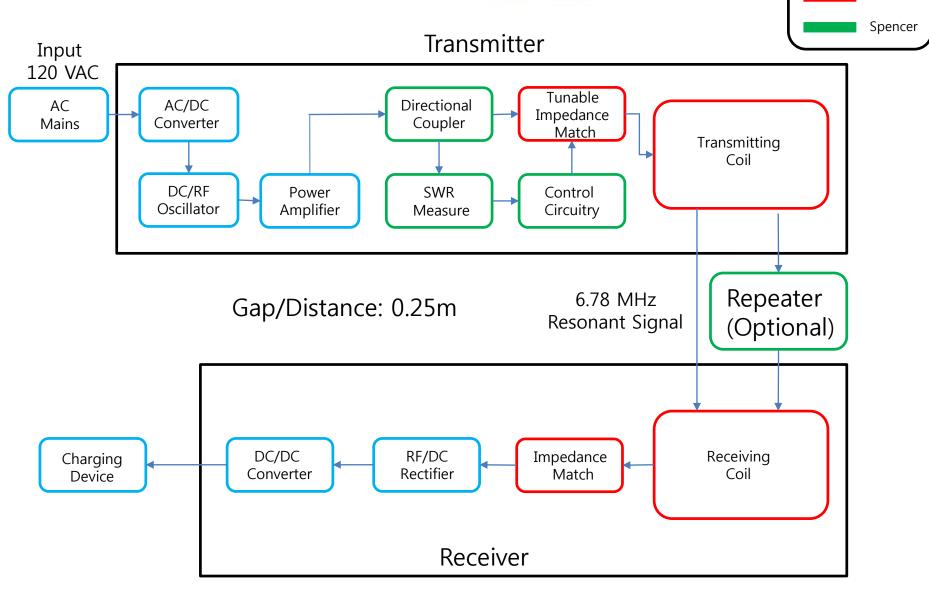
E-Space

Spencer Pietryka, Steve Bevacqua, Jonathan Scharf

Revised System Requirements

- Changed minimum output power from 3.3W to 2.5W based on minimum USB charging requirements
- Changed final range to 10 cm

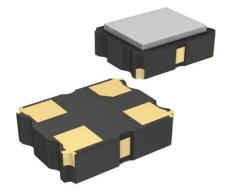

Input Specifications	120 VAC at 60Hz
Frequency	6.78 MHz
Distance/Range	10 cm
Minimum Output Power	2.5W
Minimum Wireless Transfer Efficiency	≥40%
Minimum Total System Efficiency	≥10%
Maximum Receiver Size	4.54 in X 2.31 in

Team Responsibilities

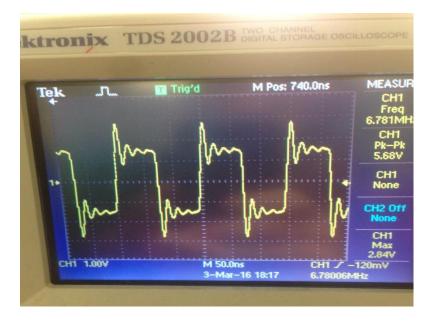
	December	January	February	March	April	
Jon Scharf	Coil Redesign					
		Impedance Matching				
				PCB Design/	Case Design	
Steve Bevacqua		Increase Power				
	Oscillator Design/Integration					
			Rectifier, Voltage Regulation			
Spencer Pietryka	SWR N	Measure, Control Algorithms				
				Repeater		
		Control Circuitry				

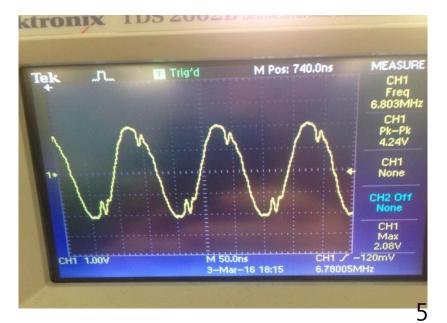
Gantt Chart from MDR

Projected Block Diagram

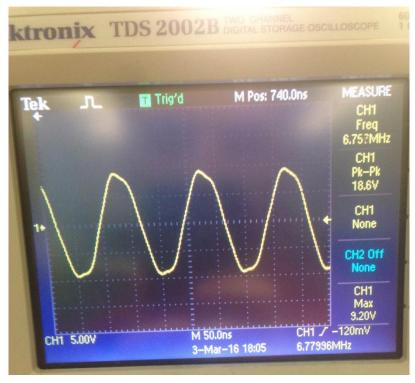


Steve

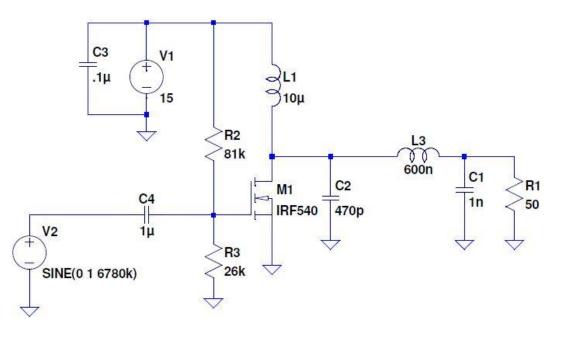

Jon


Oscillator

- Epson SG-210STF 6.7800ML Crystal Oscillator
- Stable 6.78 MHz frequency of oscillation
- Supply of 1.6V-3.6V and 1.8mA


• Output amplitude is directly proportional to supply voltage

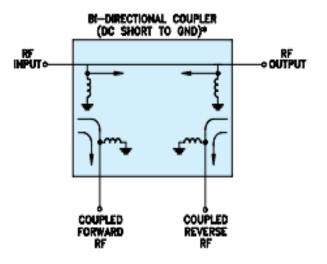
Power Amplifier


- Linear power amplifier
- Input 1mW-5mW
- 40dB gain, 45W max output power
- 3MHz-30MHz input frequency range
- SMA connectors on input and output

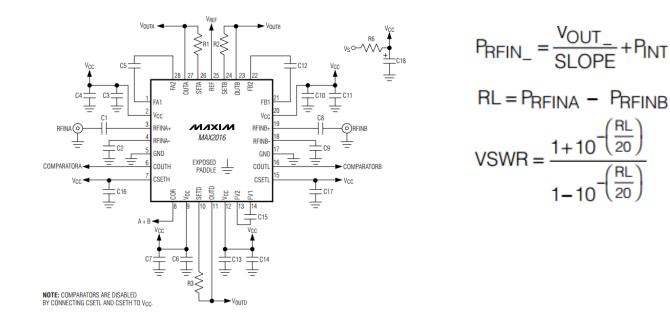


Power Amplifier

- Class E amplifier design
- ~15dB voltage gain
- Up to 40W output



Directional Coupler


- Goal: Measure incident and reflected power from transmitting coil to quantify match
- Mini-Circuits SYDC-20-31HP+ Bi-directional Coupler
- 0.07 dB mainline loss
- 50 W power handling capability
- >41 dB directivity
- 20.4 dB coupling
- 36 dB return loss

SWR Measure

- Goal: Use coupled ports from bi-directional coupler to measure incident and reflected powers and provide proportional DC voltage
- Maxim Integrated MAX2016 LF-to-2.5GHz Dual Logarithmic Detector
- RF Input Power Range: -70 to +10 dBm

Coil Design

Recall Transmitter Limitation Due To Reciever Size:

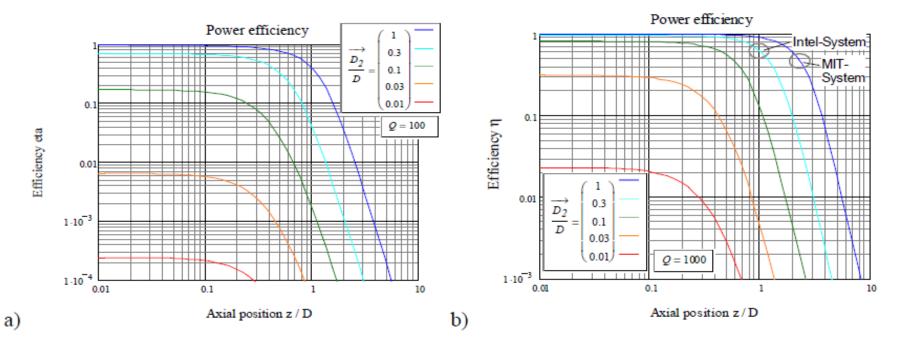
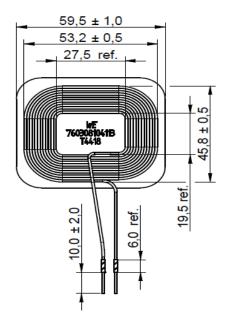


Figure 7: Power efficiency for an inductive power transfer system consisting of loop inductors in dependence on their axial distance z with size ratio as parameter. Calculated for a quality factor of a) Q = 100, b) Q = 1000

Waffenschmidt, Eberhard, and Toine Staring. "Limitation of inductive power transfer for consumer applications." In *Power Electronics and Applications, 2009. EPE'09. 13th European Conference on*, pp. 1-10. IEEE, 2009.


Coil Design

Coil Design Limited to ~175 mm Outer Diameter

Purchased Coil:

Dimensions: [mm]

Electrical Properties

Properties	Test conditions		Value	Unit	Tol.
Inductance	125 kHz/ 10 mA	L	12	μH	±10%
Q-factor	125 kHz/ 10 mA	Q	120		
Rated Current	$\Delta T = 40 \text{ K}$	I _R	8	А	max.
Saturation Current		I _{SAT}	10	А	typ.
DC Resistance	@ 20°C	R _{DC}	0.06	Ω	typ.
DC Resistance	@ 20°C	R _{DC}	0.072	Ω	max.
Self Resonant Frequency		f _{res}	16	MHz	

Coil Design

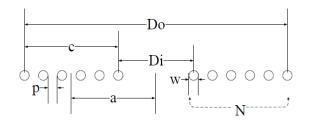


Fig. 1. Cross-sectional view of flat spiral coil.

$$D_{i} = D_{o} - 2N(w+p), \qquad l = \frac{1}{2}N\pi(D_{o} + D_{i})$$
(1)
$$a = \frac{1}{4}(D_{o} + D_{i}), \qquad c = \frac{1}{2}(D_{o} - D_{i})$$
(2)

B. H. Waters, B. J. Mahoney, Gunbok Lee and J. R. Smith, "*Optimal coil size ratios for wireless power transfer applications*," Circuits and Syst ems (ISCAS), 2014 IEEE International Symposium on, Melbourne VIC, 20 14, pp. 2045-2048.

N, number of turns D_0, Outer Diameter p, Spacing between turns w, Wire Diameter D_i, Inner Diameter I, total wire length a, winding radius c, radial depth f, Resonant Frequency

$$L(H) = \frac{N^2 (D_o - N(w+p))^2}{16D_o + 28N(w+p)} \times \frac{39.37}{10^6}$$
(3)

$$R_{DC} = \frac{l}{\sigma \pi (w/2)^2}, \quad \delta = \frac{1}{\sqrt{\pi f \sigma \mu_o}} \tag{5}$$

$$R = R_{DC} \frac{w}{4\delta} = \sqrt{\frac{f\pi\mu_o}{\sigma}} \frac{N(D_o - N(w+p))}{w}$$
(6)

$$Q = \frac{1}{R}\sqrt{\frac{L}{C}} = \frac{39.37}{10^6}\sqrt{\frac{f\pi\sigma}{\mu_o}}\frac{wN(D_o - N(w+p))}{8D_o + 14N(w+p)}$$
(7)

Coupling Factor and Coefficient Calculation

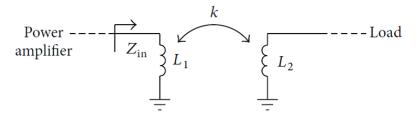
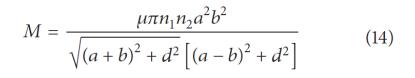
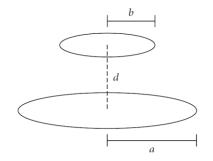
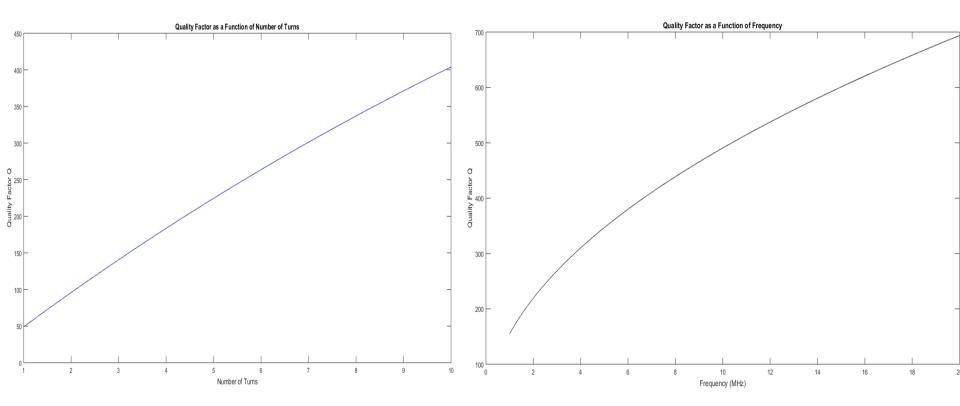



FIGURE 1: Inductive link schematic.

 $k = \frac{M}{\sqrt{L_i L_j}}$

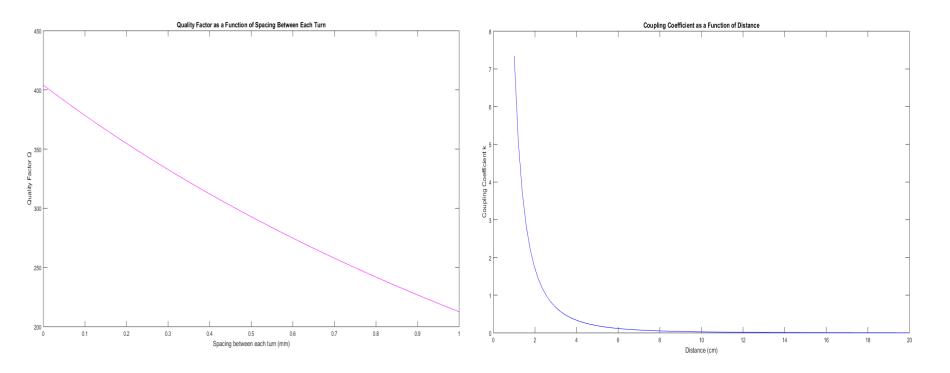



FIGURE 2: Two coaxial coils with radii *a* and *b*.

Rafael Mendes Duarte and Gordana Klaric Felic, "Analysis of the Coupling Coefficient in Inductive Energy Transfer Systems," Active and Passive Electronic Components, vol. 2014, Article ID 951624, 6 pages, 2014. doi:10.1155/2014/951624

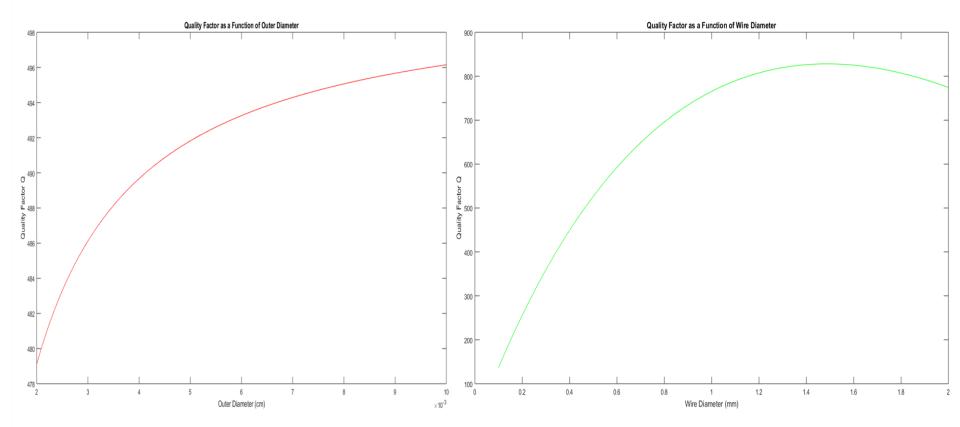
Variable Effects

Quality Factor as a Function of Number of Turns

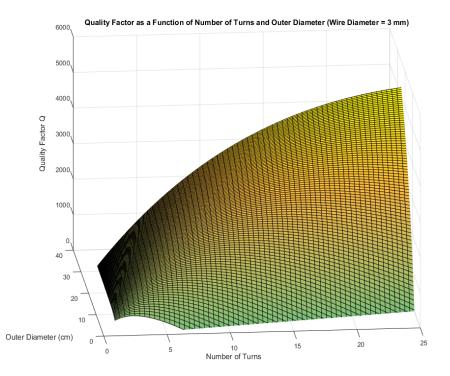

Quality Factor as a Function of Frequency

Variable Effects

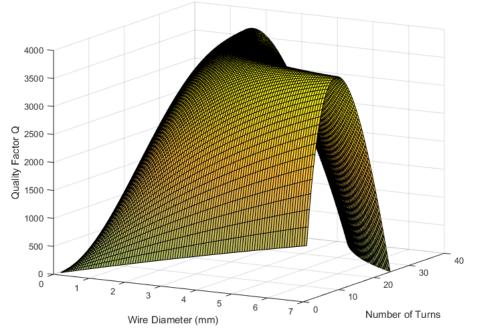
Quality Factor as a Function of Turn Spacing


Coupling Coefficient as a Function of Distance

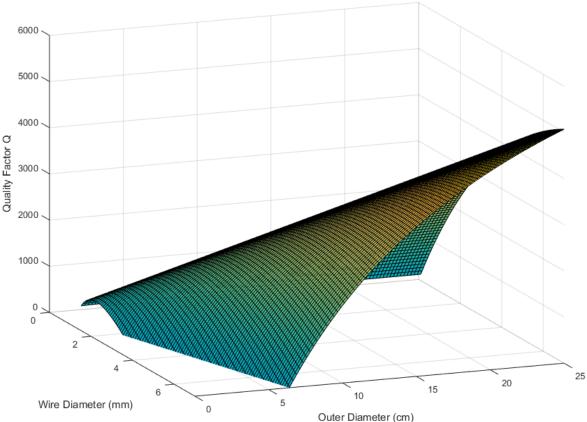
Variable Effects


Quality Factor as Function of Outer Diameter

Quality Factor as Function of Wire Diameter


3 Dimensional Analysis on Variables

Quality Factor as Function of Turns and Outer Diameter


Quality Factor as Function of Turns and Wire Diameter

Quality Factor as a Function of Wire Diameter and Number of Turns (Coil Outer Diameter = 175 mm)


3 Dimensional Analysis on Variables

Quality Factor as Function of Outer Diameter and Wire Diameter

Quality Factor as a Function of Wire Diameter and Outer Diameter (Number of Turns = 9)

Real Vs. Theoretical (Transmitter)

Picked Values for Transmitting Coil

- D_0 = 175mm
- w = 2.05 mm (12AWG)
- N = 23 turns
- s = As close to zero as possible

Theoretical Values: Me

Q_Factor = 3544 C = 6.602 pF

L= 83.233 uH R (AC) = .9440 ohms

Measured Values Q_Factor = 5137.058 C = assumed 0 F L = 61.5 uH R(AC) = .51 ohms

Impedance Matching

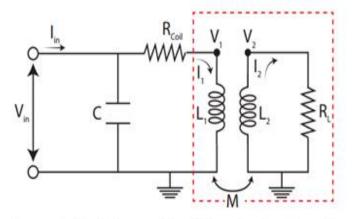
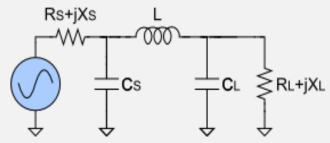


FIGURE 4. Circuit diagram of the driving coil and receiving coil

From Z_in, we calculated the impedance matching network values by setting Z_in to be our load (R_L+jX_L).

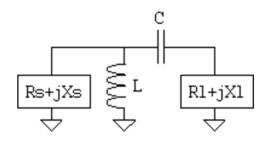
Where,

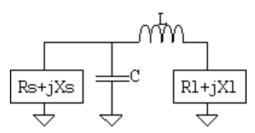
$$M = \frac{\mu_0}{4\pi} \oint_{C_{\text{emitter}}} \oint_{C_{\text{receiver}}} \frac{ds_{\text{receiver}} \cdot ds_{\text{emitter}}}{|R_{\text{emitter, receiver}}|} = k\sqrt{L_1L_2},$$


$$\frac{V_1}{I_1} = Z_{ind} = i\omega L_1 - \frac{\omega^2 M^2}{R_L - i\omega L_2}.$$

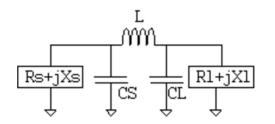
$$Z_{eq} = \left[i\omega C + \frac{1}{R_C + Z_{ind}}\right]^{-1}$$

Bhutada, Manasi, Vikaram Singh, and Chirag Warty. '**Transmission** ofWireless Power in two-coil and four-coil systems using couple d mode theory." In Aerospace Conference, 2015 IEEE, pp. 1-8. IEEE , 2015.


$$Z_{\rm in} = R_{1S} + jwL_1 + \frac{w^2M^2}{jwL_2R_{2S} + Z_L},$$


PI Network Impedance Matching

Impedance Matching Networks


L-Model Networks

Several Impedance Matching Networks were created and the values determined through online calculators and matlab scripts.

Pi-Model Network

Self Capacitance of Transmitter Coil

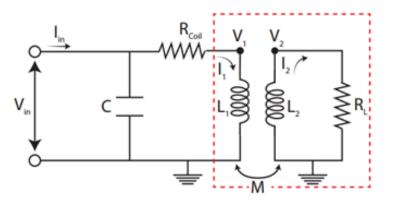


FIGURE 4. Circuit diagram of the driving coil and receiving coil

•Transmitting Coil Self Resonating Frequency is at 320 KHz

•C is actually 4.77 nF

•Impedance @6.78 MHz = -5.8492j

•Series inductance needed to tune to resonance

Receiver Coil Change

At Resonance

- L = 4.5 uH
- R = .1422
- Q Factor = 1359.2

Driving Coil

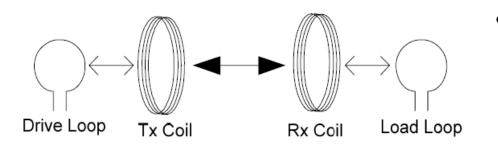


Figure 1. Magnetically coupled resonant wireless power system.

Zhao, Qiang, Anna Wang, and Hao Wang. "Structure Analysis of Magnetic Coupling Resonant for Wireless Power Transmission System." (2015).

 Used a 3 Coil System to better improve Matching

- Steps down voltage
- Driving Coil:
 55 turns & 22 AWG

Future: Impedance match to driving coil

Demonstration

- CDR Deliverables Met:
 - Implement impedance match network for 10 cm
 - Final coil sizes constructed
 - Effectively measure SWR on line
- CDR Deliverables Not Met:
 Demonstrate system output: 2.5 W over 10 cm

Demo

FDR Goals

- Deliver 2.5W over 10 cm distance
- Deliver power through USB to phone's charging port
- Package transmitting circuitry and house receiving circuitry in a phone case
- Switchable impedance matching network dependent on SWR measurements
- Oscillator fully integrated
- Power supply selected and implemented

Questions and Comments