
Team 18 Final Project Review Report 1 

 

Abstract — Two of the largest contributors to home energy 

costs in the United States are heating and cooling [1]. The Canopy 

automated shade system helps consumers cut down on energy use 

by controlling the amount of sunlight that enters a home. The 

system integrates with the Nest automated thermostat over WiFi, 

in order to determine whether the home is currently being heated 

or cooled. This information is combined with input from a light 

sensor at each shade unit, in order to determine the position of the 

shade. Nest integration allows Canopy to take advantage of Nest’s 

machine learning, which improves the system’s heating and 

cooling efficiency. Another major focus of the system is 

convenience. Through a custom Android application, users can 

control their shades remotely, and view the light levels at each 

window equipped with a Canopy shade system. Settings 

controlled through the app determine the behavior of the shades, 

and a switch on the shade unit allows for direct control of the 

shades.  

I. INTRODUCTION 

HE motivation for our project came from the high cost 

associated with heating and cooling homes and buildings. 

In 2013, the average American with natural gas spent $680 per 

year on residential heating [2], and those with air conditioners 

spent an additional $280 per year in 2010 [3]. Considering the 

fact that 26% of American adults don’t have any money saved, 

and approximately 38 million households live paycheck to 

paycheck, this cost of about $1000 per year is a significant 

burden on many people [4]. However, heating and cooling 

buildings is far more than just a financial problem. It poses a 

problem on the global scale as well, as the use of HVAC 

systems takes a direct toll on the environment. It is estimated 

that air conditioners release approximately 100 million tons of 

carbon dioxide every year [5], and in 2006, approximately 8% 

of US Carbon Dioxide emissions came from residential HVAC 

[6]. 

 There are several existing solutions that attempt to solve 

this problem by making HVAC systems more efficient. The 

Nest thermostat, which has received significant publicity in the 

past few years, saves energy by providing more intelligent 

temperature control compared to a standard thermostat [7]. 

According to a recent report, the Nest thermostat reduces 

homeowners’ costs by an average of 12% on their heating bill 

and 15% on their cooling bill [7]. Ceiling fans made by the 

company Big Ass Fans provide another solution to the 

problem. These fans integrate with the Nest thermostat, and 

make Nest more effective by allowing the system to control the  

 
 

 

airflow in a building [8]. The energy savings are most 

significant in the summer, when the added air movement 

allows a user to raise the temperature on their thermostat 

without feeling warmer [8]. Big Ass Fans claims that for every 

degree the Nest thermostat is raised in the summer, customers 

will save 5% on their energy bill [8]. A third solution is 

provided by the company Lutron. Lutron makes an automated 

shades system that saves energy by providing season-based 

settings: “winter warm” keeps the shades open to let in light 

during the winter, while “summer cool” closes the shades to 

keep out light during the summer [9]. Since sunlight is a 

significant source of heat gain in a home, controlling the light 

entering through windows depending on the season helps make 

air conditioners more efficient in the summer and heaters more 

efficient in the winter [10].  

 Like Lutron, we created an automated window shades 

system that controls indoor temperature by changing the 

amount of sunlight coming in through the windows. However, 

we added customization beyond Lutron’s two energy-based 

settings. In addition, like Big Ass Fans, we integrated with the 

Nest thermostat to provide additional intelligence and energy 

savings. The specifications for our design and our 

implementation to meet them are shown in Table I. 

 
TABLE I 

SPECIFICATIONS 

Goal Implementation 

Outdoor Light Level Sensor With 

+/-50% precision over 0.5-120k lux 

BH1620FVC-TR Photodiode 

Stable Shade to Internet Communication IEEE 802.11 

Motor Producing > 4 kg*cm Dynamixel AX-12A 

User to Device Communication Security PSK Encryption 

Web Based Data Storage AWS 

Data Integrity & Security AWS Encrypted Signatures 

Continuous Power Source Standard US 120V Wall AC 

Remote Control Android App 

Manual Control Physical Switch on Device 

II. DESIGN 

A. Overview 

Figure 1 shows the design of our automated shade unit. The 

main control unit is a WiFi integrated microcontroller which 

continually communicates an Amazon Web Services database 

and the user. This control unit serves as a processing and 

aaaaaa 

 

Michael Chapman, CSE, John Curci, EE, Justin Thibodeau, CSE, and Zachary Windoloski, CSE 

T 



Team 18 Final Project Review Report 2 

 
Figure 1: Canopy Block Diagram 

 

communication hub, with inputs originating from the Nest 

cloud, the user via Android app through the database, a light 

sensor, and a physical control switch. For our control unit, we 

considered three ideas: a centralized hub controlling multiple 

shades, an external server acting as the hub, and distributed 

control units built into each shade unit. Distributed units were 

chosen since each device would require a microcontroller and 

some form of wireless communication regardless of our 

approach. Considering that our computation requirements are 

relative low, microcontrollers placed within each unit are 

sufficiently powerful for this application. We use a 

photodiode-based light sensor to measure outdoor light levels. 

This sensor element was chosen for its ability to detect a wide 

range of light levels including darkness and bright sunlight. 

The Canopy Android application allows the user to control his 

or her shades remotely, and to view the light levels at each 

window in their home as measured by our light sensors. The 

output of our system is a shade actuator which opens and 

closes the window shade. For our actuator, we considered a 

stepper motor but decided on a servo motor because it is able 

to provide more precise position control. For a power supply, 

we considered battery or solar powered approaches, but 

determined that using wall AC would be more convenient for 

the user and would allow for continuous operation in all 

weather conditions. We use a switched-mode design to provide 

a compact and energy-efficient power source to provide the 

necessary voltages and currents to each system. 

B. Block 1: Light Sensor 

One of the core functions of Canopy is to provide an 

additional input for Nest’s intelligent heating and cooling 

system. This is achieved using a light sensor, which measures 

the brightness level at each window in the user’s home, and 

feeds that information into the Canopy control unit. This 

serves the dual purpose of improving the overall efficiency of 

the Nest system, and helping Canopy’s algorithms balance the 

energy savings associated with opening or closing the shade 

against the user’s light level preferences. 

 The sensor is based around the BH1620FVC-TR light 

sensing IC from Rohm semiconductors, which provides a 

linear output current across brightness levels spanning five 

orders of magnitude [11]. This relationship is shown in Figure 

3. The LOG101AID logarithmic transimpedance amplifier 

from Texas Instruments was used to convert this signal, which 

included currents in the range of nanoamperes at the low end, 

into a voltage that could be read in by our microcontroller 

[12]. The light sensing element is able to produce a distinct 

output across a wide range of illuminance levels.  Its 

measurement coverage includes the brightness range of 

outdoor light from 0.5 lux (bright moonlight) to 120,000 lux 

(very bright sunlight) [13]. 

 
Figure 2: Gain vs Light Level BH1620FVC-TR 

 

C. Block 2: Shade Actuator 

The shade actuator is a key component of the system that is 

relied upon to adjust the angle of the horizontal blinds. For our 

project, the team chose Achim Home Furnishing’s brand of 

venetian blinds to allow for granular light levels [14]. The 

actuator needed to meet a few general requirements: first of 

all, it needed to have enough torque to rotate the shaft that 

turns the blinds. We calculated that the blinds require a 

maximum of 4 kg-cm to rotate, so the actuator must be rated 

for at least 4 kg-cm of standing torque. In addition, the blinds 

move from -90 degrees (closed, pointing down) to 0 degrees 

(fully open) to 90 degrees (closed, pointing up) for a full 

rotation of 180 degrees. Therefore, our actuator must be 

capable of rotating at least 180 degrees. 

 Having considered these requirements, the Dynamical 

AX-12A servo was chosen as our actuator [15]. The AX-12A 

provides a maximum of 10kg-cm of torque at 10V, which is 

more than sufficient for our purpose [15]. In addition, the AX-

12A provides 300 degrees of rotation [15]. This allows us to 

achieve the full 180-degree rotation without any modifications. 

In order to perform the rotation, the motor is coupled to the 

rotating shaft inside the top of the shade. As the motor turns 

the shaft, the threads running through horizontal blinds move 

up or down, which changes their angle of the horizontal blinds. 

 Unlike most servos that are controlled with a PWM 

signal, the communication with the AX-12A is done via half 

duplex UART, where one wire is used for sending and 

receiving data [15]. Two 0xFF bytes indicate the start of the 

signal, followed by two bytes for the ID of the AX-12A unit, 



Team 18 Final Project Review Report 3 

one byte for the length of the signal, and bytes for the 

instruction or error message. In order to allow for both sending 

and receiving, the motor’s half duplex UART must be 

converted into the full duplex used by our microcontroller, 

where separate ports are used for transmitting (TX) and 

receiving (Rx). A simple tri-state buffer circuit shown below in 

Figure 3 was built to do this conversion [15]. 

 
Figure 3: Full Duplex to Half Duplex 

 

 In addition to the actuator, a SPDT rocker switch was 

added to the frame of the shade in order to provide manual 

control over the angle of the shade. Each of the throws 

connects to an input pin on our microcontroller, to allow either 

clockwise or counterclockwise rotation of the blinds 

depending on the direction that the switch was pressed. 

D. Block 3: Control Unit 

Our control unit is the brains behind the entire canopy 

device. It needed to be able to take in an analog voltage signal 

from our light sensor and translate this into a usable light level 

value. It needed to be able to send and receive bytes of data 

over a TX/RX connection to our motor to set shade positions 

and receive feedback from the motor. It needed to be capable 

of communicating to the internet in order to access user 

defined settings held in an Amazon Web Services (AWS) 

database [16], Nest thermostat information from Nest’s own 

data cloud [17]. Finally, it needed to be able to communicate 

directly with a user’s phone in order to be set up on their in-

home network. 

 To handle the required data storage, and model user to 

device relationships, we created a DynamoDB instance within 

AWS [16]. AWS provides us with a database that requires pre-

shared credentials in order to access data, allowing us to 

ensure that all data is coming from a trusted place. It is also 

scalable, meaning that while testing we are only using a very 

small database, but when this project would eventually grow to 

multiple shades and users, the database will scale up to match 

demand. 

 The Adafruit Huzzah board [18] was chosen to perform 

our computation tasks for several reasons. The onboard 

ESP8266 processor provides us a microcontroller with full 

WiFi support to act as both an access point and as a client. 

There are low power modes available that allow the board to 

disable WiFi communication in order to save power, which 

will allow the system to sense data more frequently than it 

communicates over the internet. Also included is a watchdog 

timer, which allows the board to be put into a very low power 

state when not actively sensing or communicating, while still 

able to receive an interrupt signal to wake up at specific times 

or when the user interacts with the device. 

 When acting in access point mode, the board can be 

directly connected to and will respond to POST requests 

containing an SSID, password, and AWS id. When the device 

receives one of these requests, it sends an OK response back, 

stores the given network information in its EEPROM, and 

switches to its client mode. We encrypt the network password 

using a pre-shared key so that it is never sent as raw text. 

When the board is in client mode, it directly connects to the 

network stored in its EEPROM. Upon entering this mode, the 

board performs two initial tasks. First, it sends an NTP request 

via UDP to get the current UTC time. This should occur on a 

daily basis and any time the device is restarted to ensure that 

the correct time is always set. The board then sends an HTTP 

request to ip-api.com/xml, in order to find its current latitude 

and longitude value. This information is combined with the 

current time to determine the approximate angle of elevation 

of the sun. Once these two tasks are complete, the board sends 

queries to the database to get all behavior data for the Shade 

entry using the id that was given to it during setup, and to 

update the current state of the device. This is done through a 

series of state machines so that we can send a request and 

continue doing other work until a response comes back or the 

request times out and we try again. 

 If the shade is set to be in user or room mode, a second 

query is made to get the behavior from the appropriate object. 

If the shade is set to be in schedule mode, it queries for all 

schedule items linked to the shade and does a 2-way search to 

decide which item to follow. Schedules only have a notion of 

weekday, not date, so to decide which to follow it needs to 

either find the closest item to the current time that occurred 

earlier in the week, or the item furthest away later in the week 

since this would wrap around in a circle. 

 In order to access Nest thermostat information, we need 

an SSL connection, which we cannot open directly from the 

Huzzah board. To get around this, we leverage AWS Lambda 

[21] which can run JavaScript code when it detects changes in 

DynamoDB. Through this, we detect the device updating its 

entry in the database then send queries to Nest using their API 

to get temperature data from the linked thermostat. Nest 

throttles queries to any given thermostat that occur more than 

once per minute, so we also store a timestamp of the last 

update to ensure our requests never exceed this rate. 

 During normal operation, the device reads in sunlight 

data being provided from our sensor on its ADC connection as 

a value between 0 and 1023. We map this value onto a set of 



Team 18 Final Project Review Report 4 

experimentally chosen brightness windows including bright 

sun, cloudy, and dark. These windows are shown in Table 2. 

The sunlight level is used in many of our behavior modes, and 

is also pushed to AWS every 15 minutes so that a visual graph 

of light levels can be viewed from within the app. 

 
TABLE II 

LIGHT LEVEL THRESHOLDS 

Approximate Light Level in Lux Log of Light Level Description 

10,000 - 100,000 >700 Bright Sun 

1,000 - 10,000 400 - 700 Cloudy 

100 - 1,000 200 - 400 Very Cloudy 

0.1 - 100 <200 Dark 

 

 The behavior modes we have implemented are: opened, 

closed, manual, preservation, convenience, and energy 

efficiency. When set to open or closed, the shade will stay at 

that position until it is changed to something else through the 

app or scheduling. The manual behavior keeps the shade at its 

current position only allowing the physical switch to change it. 

Preservation mode is used when the user wants to protect items 

from the sun. The shade will be open at a low enough light 

level, but when it detects direct sunlight above the “Bright 

Sun” threshold, the shade will close, preserving light sensitive 

valuables. The convenience mode is a standard use case where 

the shade will open at sunrise and stay open until the sun sets. 

Sunrise and sunset times are calculated using the latitude and 

longitude values gathered earlier. 

 Energy efficiency is the most prominent mode of the 

device and tells the shade to act in whichever way will help 

make heating or cooling more efficient. To do this, the 

controller first uses the temperature data provided from Nest to 

see if the thermostat is attempting to heat or cool the room. It 

then compares this with the current light level. If the 

thermostat is trying to heat the home, and there is ample 

sunlight above the “Bright Sun” threshold, the shades open to 

let it in. If it is too dark, below the “Very Cloudy” threshold, 

the shades close to insulate and keep in heat. Conversely, if the 

thermostat is trying to cool the home, and there is bright 

sunlight, the shades close to block it out. If it becomes dark, 

the shades open to try and minimize their insulating effect. 

 At any point, the user has the ability to manually override 

the behavior of the shade using the rocker switch on the side of 

the frame. When a manual override is detected, a button will 

appear in the mobile application allowing the user to cancel 

that manual override on the application, and reset the shade to 

its programmed behavior. If the user doesn’t press this cancel 

button, the shade will reset automatically after a grace period. 

After the first manual override is detected, the microcontroller 

will give the user a 15-minute grace period before resetting 

itself. However, if the microcontroller continues to receive 

overrides after it has reset, this grace period will increase from 

15 minutes, to 30 minutes, to 1 hour, and then to 24 hours, in 

order to respond intelligently to the user’s behavior. If the user 

stops manually overriding the behavior, the grace period will 

drop back to 15 minutes.  

 Once everything above has occurred, the microcontroller 

sends a packet of data over its TX connection to the shade 

actuator telling it to set the shade slats to the specific angle 

defined by the behavior or manual override. 

E. Block 4: Mobile Application 

The mobile application is the interface for users to 

communicates with their shades and the overall system. In 

order to save settings and shade information, and to share that 

information between the application and the control unit, we 

needed a common database. We chose to use AWS’s 

DynamoDB [16]. The application is able to push and pull data 

from this database by using provided libraries created for 

Android by Amazon. 

 Within the app, users set up a username and password to 

uniquely identify their account which links all of their shades, 

rooms, and schedules together. The password they provide is 

hashed using an md5 hash so no plaintext passwords are stored 

within AWS. Users are able to link this account with their Nest 

account by opening an internal browser which loads an 

authorization page and asks the user for their consent. After 

this is done, they can add or remove shades from their system, 

group shades together by rooms, link shades to a specific Nest 

thermostat, and define the shades behavior.  Figure 4 shows an 

example of a shade page. 

 

 
Figure 4: Shade View 

 

 A user can create a schedule for their shade, room, or 

home through the app which allows them to pick any of the 

behaviors described in Section D and place them at a start time 

and day of the week. When in schedule mode, the shade will 

follow the most recent behavior until another scheduled 

behavior comes up. Within the app there is a schedule view, 

shown in Figure 5, which allows the user to view their 

schedule in a pictorial format over time, with different images 

denoting different behaviors. This schedule setup is very 



Team 18 Final Project Review Report 5 

similar to how the Nest thermostat itself handles schedules, 

making it easy for the user to transfer knowledge from their 

system to ours, or vice versa. 

 

 
Figure 5: Schedule View 

 

 Another feature present for each shade is the ability to 

view a sunlight graph within the app. Every 15 minutes the 

shade sends its current sunlight reading to AWS. We then use 

all of those data points to create a graph through time of the 

light level that the shade has recorded. This gives the user an 

easy way to see the changes in light outside of that window 

and allow them to make smarter choices about their shade 

layouts. An example of this is shown in Figure 5. 

 

 
Figure 6: Sunlight Graph 

 

 When a shade is added to a system, the application allows 

the user to connect the shade to their local wireless network. 

To do this, the application first creates a shade object in AWS 

and then prompts the user to: select their network from a list of 

those visible to the app, enter the password for the network, 

and enter an id that would be printed on the shade in order to 

distinguish it from any other shades the user may own. The 

app then disconnects itself from its current WiFi network (if 

any) and connects directly to the shade’s network card which 

is acting as an access point. After connecting, the app pushes 

the network SSID, a hashed version of the password, and the 

id of the shade object it created in AWS. It then waits several 

seconds to see if the shade was able to successfully connect 

and communicate with AWS before alerting the user of the 

success or failure. 

 When deciding which mobile platform to develop in, 

there were three main choices, Android, iOS, and Windows. 

Windows had limited libraries and tutorials available at the 

time of design so it was ruled out. The two remaining were 

very similar in their offered functionality, but we decided on 

Android since the majority of our own physical devices ran 

Android which would make testing much easier. 

 Because mobile application development is not taught in 

any of our courses, we learned almost everything this year We 

used android’s multiple tutorials and code samples as our 

primary sources of information [19]. Since the application 

integrates with Amazon Web Services (AWS) for data storage, 

tutorials and code samples provided by Amazon were also 

used during development. 

 Development for this application was done through 

Android Studio [20]. It allowed for the easiest way to create 

and test the application. The application can be built through 

their IDE using the Java programming language. Android 

Studio also offers an emulator which was used to test the 

application without having to load it onto a physical device. 

This allowed for testing of the application and testing between 

the application and AWS to occur easily. To ensure that data 

was being sent correctly to AWS we used Amazon’s developer 

console to directly view the tables. 

III. PROJECT MANAGEMENT 

From MDR to FPR we were able to meet all of the 

deadlines that we had set for ourselves using a Gantt chart, as 

well as some additional functionality that we had not initially 

planned out. All of the timelines assigned were completed by 

the person that they were intended for. Continuing to use our 

weekly team meetings to ensure each member was on pace to 

finish played a crucial role in the success of our project. We 

also used that time to work together for parts of the project that 

required communication with each other so that everyone was 

always on the same page moving forward and to ensure there 

was nothing blocking progress. 

 Our team was comprised of one EE and three CSE 

majors. This worked well since our project had a significant 

software focus. We tasked the EE in our group, John, with the 

light sensor and power systems since that is where his 

strengths lie. He designed our light sensor circuit, our PCB to 

house all electronics, and assembled these electronics. 

Michael, a CSE, worked with the shade actuator which is 

mechanically heavy and integrated that subsystem with the 

control unit. He also took control of the manual override and 

finalizing the shade behavior logic. Zachary, also a CSE, was 

responsible for the mobile application and collaborated with 

Justin to coordinate AWS database communication and setup. 

He put the bulk of the app together, figured out user login, and 

created our shade, room, and schedule management systems. 

Justin, the third CSE and Team Manager was responsible for 

the control unit’s interfaces, WiFi setup and internet 



Team 18 Final Project Review Report 6 

communication, as well as keeping the team on track. Towards 

the end of the project, Justin was able to help improve the 

usability of the app by adding a visual interface for schedules, 

light level graphs, and optimizing the overall app flow.  

IV. RESULTS 

We performed an analysis of our system while it was 

running in order to determine its power usage. When idle, the 

system uses ~85mW, which remains unchanged during the 

device’s WiFi setup. While the motor was running, there was a 

~145mW peak, however the average power consumption 

remains very close to 85mW since the motor is only running 

for a few seconds at a time, not constantly. From this, we 

calculated that one shade uses roughly 2Wh/day when 

operating nonstop. For comparison, a 15W CFL bulb uses 

30Wh when used for only 2 hours/day. Our devices usage is 

also comparable to running a 1500W space heater for ~5 

seconds. For an average household which may use up to 20 

shades, the overall power usage of the system would be just 

40Wh/day. 

 We also did a cost analysis for the system. Our calculated 

development cost for a single unit and estimated production 

costs per unit, when producing 1000, are shown below in 

Table 3. At production, we are currently still accounting for 

the high cost of 3D printing a case, however we believe that 

this cost would be drastically minimized if we used an 

injection molding process, or adapted the system to be usable 

within any existing shades. 

 
TABLE III 

COST ANALYSIS 

Part Development Price Production Price 

PCB $141.51  $1.52  

Motor $44.90  $37.50  

Adafruit Huzzah $9.95  $7.96  

Light Sensor $12.32  $6.05  

Logarithmic Amp $16.42  $9.77  

Voltage Regulator $2.76  $2.03  

Power Adaptor $19.55  $11.98  

Resistors/Capacitors $1.00  $1.00  

AWS* $0.00  $30.60  

Case $53.43  $53.43  

Total $331.13  $179.23  

 

V. CONCLUSION 

For FPR we had proposed: the electronics would be entirely 

self-contained on a PCB with no connections to a variable 

power supply or computer necessary, Nest integration would 

be complete, device to network setup would be achievable 

from within the app, shade behavior modes would be fully 

fleshed out and working, manual control would be fully 

implemented, and the app would contain all required 

functionality to set behaviors and schedules, organize objects, 

and have user authentication to allow for a multi-user system. 

All of these goals have been achieved with the additions of our 

sunlight data collection, updated app graphics and flow, 

automatic return from manual override, a housing to protect 

the electronics, and an analysis of the system's power 

consumption. Overall, we are very proud of what we have 

managed to accomplish across these 2 semesters and are very 

glad to have had this opportunity. 

ACKNOWLEDGMENT 

We would like to thank our Faculty Advisor, Professor 

Csaba Andras Moritz, for being a guiding hand as we made 

design decisions for our project and for helping us refine our 

ideas. We would also like to thank our faculty evaluators, 

Professor T. Baird Soules and Professor Zlatan Aksamija, for 

giving us useful feedback and criticism at various stages of 

development. Regarding technical advice, we would like to 

thank Professor Joseph Bardin for his advice on the amplifier 

stage of the light sensor, Professor Charles Malloch for his 

advice on implementing WiFi capabilities, and Daniel 

Bergman for his help with the motor setup and the associated 

machining. 

REFERENCES 

[1] Energy.gov, 'Tips: Your Home's Energy Use | Department of Energy', 

2015. [Online]. Available: http://www.energy.gov/energysaver/tips-

your-homes-energy-use. [Accessed: 09- Dec- 2015]. 

[2] Eia.gov, 'Heating costs for most households are forecast to rise from last 

winter’s level - Today in Energy - U.S. Energy Information 

Administration (EIA)', 2013. [Online]. Available: 

http://www.eia.gov/todayinenergy/detail.cfm?id=13311#tabs_SpotPrice 

Slider-3. [Accessed: 09- Dec- 2015].  

[3] Carbonrally.com, 'Carbonrally – air conditioner costs', 2015. [Online]. 

Available: http://www.carbonrally.com/challenges/22-air-conditioner-

costs. [Accessed: 09- Dec- 2015].  

[4] CreditDonkey, "23 Dizzying Average American Savings Statistics", 

2016. [Online]. Available: https://www.creditdonkey.com/average-

american-savings-statistics.html. [Accessed: 03- Jan- 2016].  

[5] Energy.gov, "Air Conditioning | Department of Energy", 2016. [Online]. 

Available: http://energy.gov/energysaver/air-conditioning. [Accessed: 

03- Jan- 2016].  

[6] C2es.org, 'Buildings Overview | Center for Climate and Energy 

Solutions', 2015. [Online]. Available: 

http://www.c2es.org/technology/overview/buildings. [Accessed: 09-

Dec- 2015].  

[7] J. McGrath, "Nest studied customers’ heating and cooling savings, and 

the results are in", Digital Trends, 2015. [Online]. Available: 

http://www.digitaltrends.com/home/how-much-money-does-nests-

smart-thermostat-save/. [Accessed: 02- Jan- 2016].  

[8] Big Ass Fans Introduces Integration with Nest Learning Thermostat » 

Big Ass Fans, "Big Ass Fans Introduces Integration with Nest Learning 

Thermostat » Big Ass Fans", 2014. [Online]. Available: 

http://www.bigassfans.com/big-ass-fans-introduces-integration-nest-

learning-thermostat/. [Accessed: 02- Jan- 2016].  

[9] Lutron.com, "Shading Solutions from Lutron Provide Energy Saving 

Light Control", 2016. [Online]. Available: http://www.lutron.com/en-

US/Residential-Commercial-Solutions/Pages/Residential-

Solutions/ShadingSolutions.aspx. [Accessed: 03- Jan- 2016].  

[10] Savewithsrp.com, "SRP: Home inspection to reduce heat gain", 2016. 

[Online]. Available: http://www.savewithsrp.com/DIY/heatgain.aspx. 

[Accessed: 03- Jan- 2016].  

 

 



Team 18 Final Project Review Report 7 

[11] Rhom Semiconductor. (2012, Feb.). “BH1620FVC Ambient Light 

Sensor IC” [Online]. Available: http://rohm fs.rohm.com 

/en/products/databook/datasheet/ic/sensor/light/ bh1620fvc-e.pdf [Dec 

28, 2015]. 

[12] Texas Instruments. (2002, May.). “LOG101 Logarithmic and Log Ratio 

Amplifier” [Online]. Available: 

http://www.ti.com/lit/ds/symlink/log101.pdf [Dec 28, 2015].  

[13] M. Burke, Handbook of machine vision engineering. London: Chapman 

& Hall, 1996.  

[14] Amazon.com, "Amazon.com - Achim Home Furnishings Luna 2-Inch 

Vinyl Blind, 23 by 64-Inch, Mahogany - Window Treatment Vertical 

Blinds", 2016. [Online]. Available: http://www.amazon.com/Achim-

Home-Furnishings-64-Inch-Mahogany/dp/B00FJDVDU4. [Accessed: 

02- Jan- 2016].  

[15] Support.robotis.com, "AX-12/AX-12+/AX-12A", 2016. [Online]. 

Available: 

http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actu

a tor.htm. [Accessed: 09- Dec- 2016].  

[16] Amazon Web Services, Inc., 'AWS | Amazon DynamoDB - NoSQL 

Cloud Database Service', 2015. [Online]. Available: 

https://aws.amazon.com/dynamodb/?hp=tile. [Accessed: 09- Dec-2015].  

[17] Developer.nest.com, "Nest Developers", 2015. [Online]. Available: 

https://developer.nest.com/. [Accessed: 30- Dec- 2015].  

[18] Learn.adafruit.com, 'Overview | Adafruit HUZZAH ESP8266 breakout | 

Adafruit Learning System', 2015. [Online]. Available: 

https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/overview. 

[Accessed: 09- Dec- 2015].  

[19] Developer.android.com, "Getting Started | Android Developers", 2016. 

[Online]. Available: http://developer.android.com/training/index.html. 

[Accessed: 25- Jan- 2016].  

[20] A. Overview, "Android Studio Overview | Android Developers", 

Developer.android.com, 2016. [Online]. Available: 

http://developer.android.com/tools/studio/index.html. [Accessed: 25-

Jan- 2016].  

[21] Amazon Web Services, Inc., 'AWS Lambda - Serverless Compute', 

2016. [Online]. Available: https://aws.amazon.com/lambda. [Accessed: 

02-May-2016]. 


