

Neptune

Team 16 October 22, 2015

Department of Electrical and Computer Engineering

Advisor: Professor Holcomb

1

Team 16 Introduction

Department of Electrical and Computer Engineering

What is the Problem?

- Drownings are a leading cause of accidental injuryrelated deaths throughout the world.
- Several factors contribute to risk of drowning including:
 - Lack of swimming ability
 - Lack of necessary barriers
 - Lack of close supervision
- These tragic deaths can be prevented in some cases.

How significant is the problem?

- Est. 370,000 drownings worldwide per year
- From 2005-2009, there were an average of about 3,900 drowning deaths per year in the US¹
 About half of these deaths occurred in swimming pools.¹

Drowning ranks 5th in the leading causes of unintentional injury death in the US. 1st among children aged 1-4.¹

¹CDC. (2012, May 18). Drowning - United States, 2005-2009. *Morbidity and Mortality Weekly Report, 61.* Retrieved from http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6119a4.htm

Department of Electrical and Computer Engineering

Context: Effect on Individuals

- Greatly decrease the chances of children and adults drowning in swimming pools.
- Help lifeguards do their jobs more effectively.
 - Help homeowners protect their pools. Insurance discount?

Department of Electrical and Computer Engineering

Context: Effect on Groups

- Loss of loved ones has an inexplicable impact on families as well as the communities in which they live.
- Parents especially vulnerable
- Monitoring public swimming pools.

Existing Solution - Poseidon Drowning Detection

• Features:

- Cameras detect and track movement in the pool
- Artificial Intelligence which differentiates between "normal" and "suspicious" behavior
- Security Display from which every camera feed can be monitored

• Alert

- LED Sign
- Alarm
- Capacity
 - Covers an entire pool
- Cost

O Starts at \$60,000 and maxes out at \$150,000 Bunyan, N. (2005, September 1). Underwater camera save pool girl from drowning. *The Telegraph*. Retrieved at http://www.telegraph.

Bunyan, N. (2005, September 1). Underwater camera save pool girl from drowning. *The Telegraph*. Retrieved at http://www.telegraph co.uk/news/uknews/1497363/Underwater-cameras-save-pool-girl-from-drowning.html

Department of Electrical and Computer Engineering

Advisor: Professor Holcomb

Greg

Existing Solution - iSwimband

• Features

- Headband or wristband
- Detects how long user has been submerged

Alarm

- Bluetooth alert sent to cell phone
- Capacity
 - Eight bands per smartphone
- Cost

0

\$40-\$50 for one headband and one wristband

Our solution: Neptune

• Features

- Uses multiple ultrasonic sensors to detect people's and animal's positions in the pool.
- Data is compiled in the control center where 2D maps
 of the pool are created and displayed on the monitor.

• Alert

- LEDs and audible alarm goes off upon drowning detection.
- SMS alert also sent to the user's phone upon detection.

• Cost

• Budget: \$500 (not including installation)

Theory

- Our design proposal is based on the human approach to determine drowning
 - Lifeguards are taught to identify a drowning victim
 based on their movements in the water.
 - Typical drowning victims appear to struggle and thrash
 around while remaining in the same spot.

Requirement Analysis: Specifications

- Detect people entering the pool
- Alert nearby people
- Minimize false alarms from a person "standing still" versus an unresponsive individual

Doppler shift³ for sound yields:

 $f_{target} = f_{source} \frac{(v_{sound} \pm v_{target})}{(v_{sound} \pm v_{source})} \text{ where } v_{source} = 0 \text{ m/s}$

³Redner, S. (2006, February 11). The Doppler Effect. *Boston University*. Retrieved at http://physics.bu.edu/~redner/211sp06/class19/class19_doppler.html

Department of Electrical and Computer Engineering

Advisor: Professor Holcomb

Hang

Requirement Analysis: Inputs and Outputs

Input:

Pool environment

Output:

- Text message
- Audible alarm
- Flashing LEDs

Block Diagram

Department of Electrical and Computer Engineering

Block 1: Ultrasonic Sensor

Transmitter:

Generate ultrasound at a frequency over 40 kHz

• Receiver:

- Center bandpass filter around $f_c = 40 \text{ kHz}$
- Apply Doppler shift equation:
 - flow = 32 kHz and fhigh = 48 kHz

Hang

Block 2: Control Station

Single Board Computer

- CPU: 1.6 GHz ARM Cortex-A9 quad core
- Memory: 1GB
- Storage: Micro-SD card
- Wifi
- Supports Linux and Android OS
- 2 USB Ports
- HDMI Port
- Display
 - HDMI Monitor
- Alarm
 - Visual and audible notification

Raspberry Pi 2 Model B

- ARM Cortex A7 Processor
- 1 GB RAM
- 4 USB Ports
- Ethernet Port
- HDMI Port

Cons:

No Analog/ Digital

Conversion support

Design Alternatives - Wristband Sensor

• Description:

 Built-in pulse oximeter to constantly monitor blood oxygen level, and alert someone once the oxygen level dramatically decreases

• Advantages:

- Low power
- Long range
- Lightweight

Disadvantages:

- Expensive (one per person)
- Difficult to stay on kids
- Unable to detect location

Department of Electrical and Computer Engineering

Advisor: Professor Holcomb

UMassAmherst

Design Alternatives - Underwater Camera System

• Description:

 Monitors and tracks people actions to detect drowning behaviors and/or motionless victims

Advantages:

AccurateTime-saving

Disadvantages:

May not function at night Expensive

Hang

MDR Deliverables

- Prospective MDR deliverables
 - Using a small body of water (bucket/bowl):
 - i. Working sonar sensor capable of detecting the presence of and distance of an object on one axis.
 - ii. Alert functionality (flashing LEDs, and alarm)
 - iii. Process received signals in order to create a "map" of

the pool, showing location of the object.

Department of Electrical and Computer Engineering

Gantt Chart

SDP-16

ACTIVITY	PLAN START	PLAN DURATION	20-Sep PERIODS	27-Sep S	4-Oct	11-Oct	18-Oct	25-Oct	1-Nov	8-Nov	15-Nov	22-Nov	29-Nov	6-Dec	13-Dec	20-Dec
			1	2	3	4	5	6	7	8	9	10	11	12	13	14
Brainstorm	1	2														
Decide Idea	3	1														
Solutions	4	1														
PDR PPT	5	1														
Research	3	3														
Report	11	4														
MDR PPT	10	2														
Test Sonar	7	8														
Purchase products	6	7														
Test Rock Lite	7	8														
Have Alarm Working	9	3														
Return Object Distance	10	2														

Department of Electrical and Computer Engineering

Advisor: Professor Holcomb

20

Thank You! Questions?

Department of Electrical and Computer Engineering