

3D Scanner

Vangjel Frasheri, Siyan Lin, Chenkai Zhou **Faculty Advisor: Prof. Tessier**

Abstract

3D scanners are relatively new technologies that have many useful applications, but yet very few people own them, mostly due to the expense of the product. Our implementation is a way to create a cheap standalone 3D scanning system, which through the use of processing information taken by a camera and line lasers, can create digitized 3D models

System Overview

Output: STL file

• Objects are placed on the turntable The LCD screen includes a user interface to interact with the system

Block Diagram

- With the click of a button, scan starts
- Once complete, you can send it to your email for printing!

Results

STL file

Original on the left, printed scan on the right

SDP16

- Size accuracy is within 1mm
- Lighting can reduce scan quality
- Object material can reduce scan quality

 \rightarrow Flow

Specifications

Specification	Goal	Actual	
Weight	1kg	2kg	
Power	34W	22.25W	
consumption			
Cost	Under \$300	\$255	
Accuracy	+/- 5cm	+/ - 1mm	

Acknowledgement

We own our great success to Prof. Tessier; it would been very different without his advice and guidance. We would also like to thank our reviewers. Prof. Gong and **Prof.** Leonard for spending their time to evaluate our project and gave us some very great feedback

Department of Electrical and Computer Engineering

ECE 415/ECE 416 – SENIOR DESIGN PROJECT 2016

College of Engineering - University of Massachusetts Amherst

The User Interface

- With the start button, you get instant access to the freelss website
- From there you can start scanning your object
- The shoot button prompts for an email to send your last scan to

Data Collection

Resolutions

- Resolution:
- 5 Megapixel(2592 X 1944) takes about 55 mins.
 1.9Megapixel(1600 X 1200) takes about 10 mins.
 1.2Megapixel (1280 X 960) takes about 8 mins.
 0.3 Megapixel (640x480) takes about 3 mins.
- Size : 2MB- 100MB

Optics Sensor

- Turntable table
 200 steps/rev
- laser
 Line laser
 Red (wavelength 520-635 nm)
 - Camera

Camera data processing(time-lapse ect.) 5MP (2592x1944 pixels) Video resolution 1080p30

One vs. Two lasers

- Able choose one or two lasers for a scan
- not increases the quality
- but reduce the number of "gaps"
- Calibrate before use

1 laser:

2 lasers

Experiment

Laser triangulation

A laser line point to scan across a

5V					
Cost					
Development		Production(1000)			
Part	Price	Part	Price		
Raspberry Pi 2	45	Raspberry Pi 2	29.95		
Step Motor	60	Step Motor	33.54		
Laser Sensors	50	Laser Sensors	27.56		
Camera	30	Camera	23.7		
PCB	M5	PCB	5.5		
LCD	70	LCD	55.3		
Total	255	Total	175.5		
PCB LCD Total	M5 70 255	PCB LCD Total	5.555.3175.5		

target sample

- A camera sensor picks up reflected light
- System calculates the distance from the object to the scanner

