3D Scanner MDR

Team 8

dec. 07. 2015

Vangjel Frasheri

Siyan Lin

Chenkai Zhou

Advisor: Professor Tessier

UMassAmherst Team Members

Vangjel Frasheri CSE Siyan Lin EE

Chenkai Zhou EE Professor Tessier

PDR Recap : What's All In One 3D Scanner

What's our motivation ?

• to build a fully automatic, affordable and PC-free 3D scanner

Who is it for?

 anyone who desire to buy a user friendly 3D scanner. Designed to smooth into your workspace.

What does it do?

- uses a Raspberry Pi to do imaging, user interface, the math and to control the A4988 stepper driver board and lasers
- Input: physical object; Output: STL file

UMassAmherst PDR Recap: How it works

- pictures is taken with ON and OFF
- then compare between the two images
- a laser trace is obtained
- by knowing the position of the camera, system can drive the 3D model by using the 3D triangulation to generate a point cloud for each location where the laser hits the model.

source: http://www.soliforum.com/

Significance and Social Impact

- Currently no stand alone scanner
- Must be wired to computer
- In need of some other device to run

Significance and Social Impact

- Time Saving
- people are busy
- scanning is a process that takes time, let alone the time it takes to set up scanners.

Significance and Social Impact

No Room, No problem

- People can now place the scanner anywhere they want.
- No longer needs to be in a room with multiple outlets.
- Can be placed anywhere that is aesthetically appeasing
- No need to rearrange the setup of your home
- Convenient

Previous Block Diagram

Updated Block diagram

System requirement

- Able to take object as input and produce an stl (STereo Lithography) file of that object.
- It must scan objects that fit in the base of the turn table (4" in diameter) and up to a foot in height.
- Produce an accurate model of the input object, (without paying attention to minor details)

System Requirements

I MassAmherst

How accurate is "accurate"

- Model should be within +/- 2 millimeters of accuracy in terms of size. (~0.08 inches)
- In terms of area +/- 8mm^3

System Requirements

Time requirements

 Able to do a scan within 15 minutes of turning on the system Interface requirements:

 User friendly, able to be operated by people with 0 experience working with RP, terminals, or linux based systems

What we thought

- -We thought freelss does not have GUI
- -User interface on freelss is too small on a 7 inches touchscreen

🕌 3d scanner		- 🗆 X							
	start preview								
🕌 Open		×							
Look <u>I</u> n: 📑 H	-								
android	Contacts	Links							
eclipse	Desktop	📑 Music							
📑 .oracle_jre_usage	Documents	ConeDrive							
<u>га</u> .p2	Downloads	SkyDrive							
tooling.	fancy	Pictures							
3D Objects	Favorites	Saved Games							
•									
File <u>N</u> ame:									
Files of <u>Type</u> : All Files		•							
		Open Cancel							

Freelss so far

User Interface

🛃 3d scanner		- 🗆 X	l 3d scanner	- 🗆 X
	start preview		start	How to
🛃 Open		×	Open	\times
Look <u>I</u> n: 📑 H	•	a 🗅 🗆 👷 🗄	 Look In: 🗖 H 🗸	
android.	Contacts	📑 Links	android Contacts	Links
eclipse	Desktop	📑 Music	📑 .eclipse 📄 Desktop	📑 Music
📑 .oracle_jre_usage	Documents	ConeDrive	📑 .oracle_jre_usage 📄 Documents	ConeDrive
<u>га</u> .p2	Downloads	SkyDrive	p2 Downloads	SkyDrive
tooling.	📑 fancy	Pictures	toolingfancy	Pictures
📑 3D Objects	Favorites	Saved Games	📑 3D Objects 📑 Pavorites	Saved Games
File <u>N</u> ame:			File <u>N</u> ame:	
Files of <u>Type</u> : All Files		-	Files of Type: All Files	-
		Open Cancel		Open Cancel

"Start" button

-Open terminal and input command automatically

-Directly brings user to Freelss

"How to" button

- -Briefly explain what is going to happened
- -Explanation on different tabs on Freelss interface

ONLINE HELP		
		Pull to change
TR 🕹	1) Add words	Che Crient
The second	2) Choose a photo c	or chart
		Mode
	3) Edit layour	
	4) Add notes	
S	ÉT YOUR STO	RY FREE!
		e Additional Text
Stor.	Save to the web	
		Create a
T	and hold to - Win E God Wire	new Slide
	order slides	

UMassAmherst Calibration

- -Measuring required data(i.e distances between lasers, camera and scanned object)
- -most vital part throughout whole project

Hardware Flow Chart

Optics Sensor

- One vs. Two lasers
 - Able choose one or two lasers for a scan
 - not increases the quality
 - but reduce the number of "gaps"
 - calibrate before use
- further questions
 - other colors?
 - ambient light ?

• Accomplished:

Able to use python code to control it by turning it ON and off as the rate we defined.

Bipolar Stepper Motor

Implementation:

- Stepper motor and driver
- 200 steps/rev (1.8 degrees)
- 12V, 350mA
- Holding torque: 3.2kg-cm(44 oz-in)

Accomplished:

Program raspberry pi 2 microprocessor to send real time serial data to control stepper motor and control the number of revolutions in python

UMassAmherst Camera

- Resolution:
 - 5 Megapixel(2592 X 1944) takes about 55 mins. 1.9Megapixel(1600 X 1200) takes about 10 mins. 1.2Megapixel (1280 X 960) takes about 8 mins. 0.3 Megapixel (640x480) takes about 3 mins.
- Size : 2MB- 100MB
- Accomplished:
 - Build physical skins to hold components.
 - Able to program in python for the laser and table v same time while the camera is ON

UMassAmherst MDR Deliverables

- Purchase part and prototype of hardware working on breadboard
- •GUI interface which can connected to the hardware
- •Demonstrate data collection from sensors and as well as ability of basic communication
- •A prototype 3D laser scanner which able to roughly output stl file of scanning objects

- •Siyan Reliable power supply which able to power raspberry Pi, turntable, camera and laser
- •Vangjel Software data processing and able to output stl file from the input data collection
- •Chenkai Create GUI on LCD to display connectivity between GUI and raspberry pi

Siyan: building all the necessary hardware, layout skin and helping to figure GPIO pin layout

Chenkai: Drawing basic user interface outline and figuring out GPIO pin layout

Vangjel: Go through and compile Freelss software

Scheduling and important dates

Task Name	Start Date End	End Data	Duration	n Feb							Apr					
		End Date	Duration	Jan 17	Jan 24	Jan 31	Feb 7	Feb 14	Feb 21	Feb 28	Mar 6	Mar 13	Mar 20	Mar 2	7 Apr 3	Apr 10
	i 💌			ା ପ୍	⊕, 7≟											
- CDR	01/20/16	03/31/16	52d												CDR	
 Siyan: 	01/20/16	03/31/16	52d												Siyan:	
PCB integration	01/20/16	01/28/16	7d		PC	B integra	tion									
scanner chassis & help with calibration	01/29/16	02/05/16	6d				scanner cha	assis & help	o with calibra	ation						
individual debugging	02/06/16	02/29/16	17d							individ	ual debuggi	ing				
team-wise debugging	02/29/16	03/31/16	24d												team-wise de	ebugging
Chenkai:	01/20/16	03/31/16	52d												Chenkai:	
finalize GUI	01/20/16	01/22/16	3d		finalize GUI											
connect GUI to Freelss	01/23/16	01/29/16	6d		с	onnect Gl	UI to Freelss									
calibration	02/01/16	02/09/16	7d				calib	ation								
individual debugging	02/15/16	02/22/16	6d						individ	ual debuggi	ng					
team-wise debugging	02/29/16	03/31/16	24d												team-wise de	ebugging
Vangjel:	01/20/16	03/29/16	50d											Va	ngjel:	
website design and poster design	01/20/16	02/03/16	11d			we	ebsite design	and poste	r design							
help with calibration	02/04/16	02/29/16	18d							help w	ith calibratio	on				
team-wise debugging	02/29/16	03/29/16	22d											tea	am-wise debu	gging

UMassAmherst CDR Deliverables

-"Accurate" printed out object

(Model should be within +/- 2 millimeters of accuracy in terms of size. (\sim 0.08 inches) (In terms of area +/- 8mm^3)

- An user interface on LCD panel
- Nicely organized PCB

UMassAmherst Thank you

Demo. -video? -live demo?