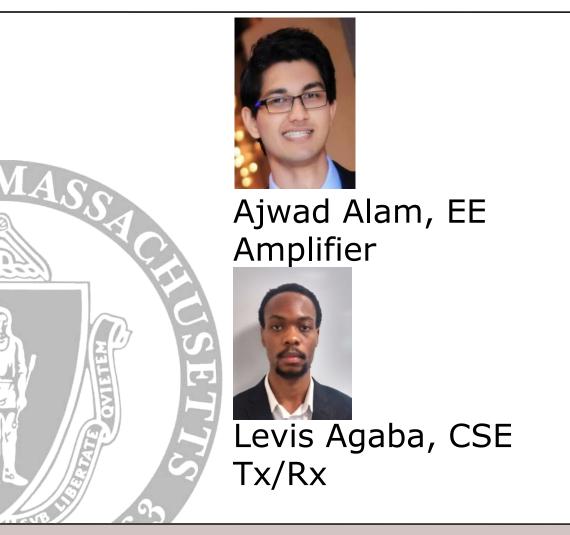
AASSA


Midway Design Review

Department of Electrical and Computer Engineering

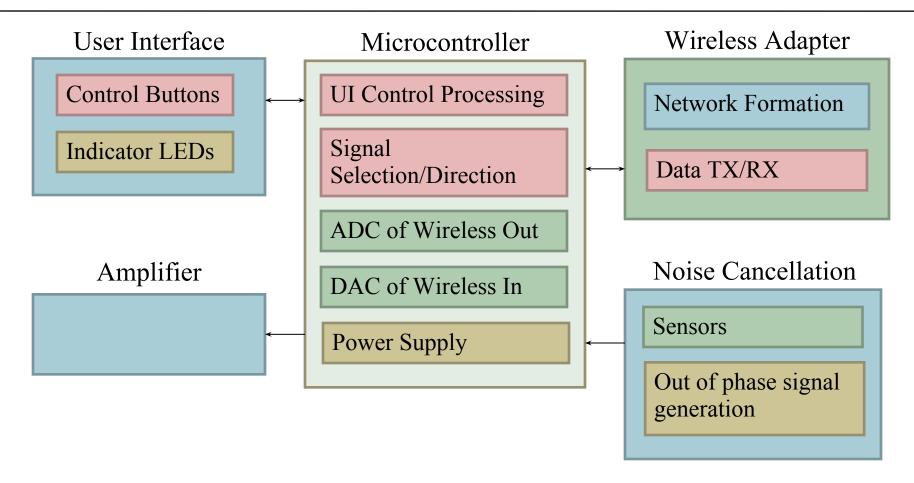
Advisor: Professor Gao

Sync-In

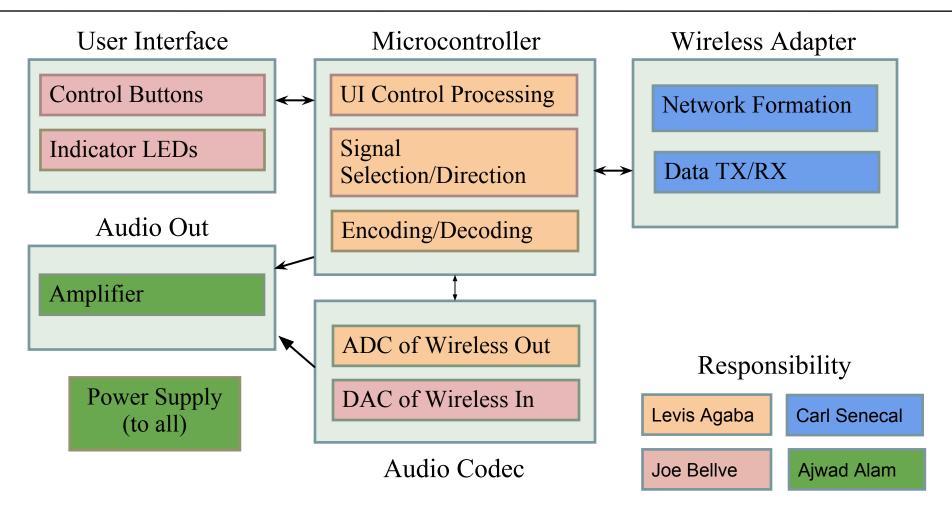
Joseph Bellve, EE User Interface

Carl Senecal, CSE Network Formation

Department of Electrical and Computer Engineering


Advisor: Professor Gao

Sync-In Overview


- Broadcast audio from one set of headphones to many in a local area via WiFi
- Independent of Internet connection or phone data plan
- Various applications
- Social Bring together strangers in unfamiliar situations through music
- Conferences/Events Broadcast translations in multiple languages

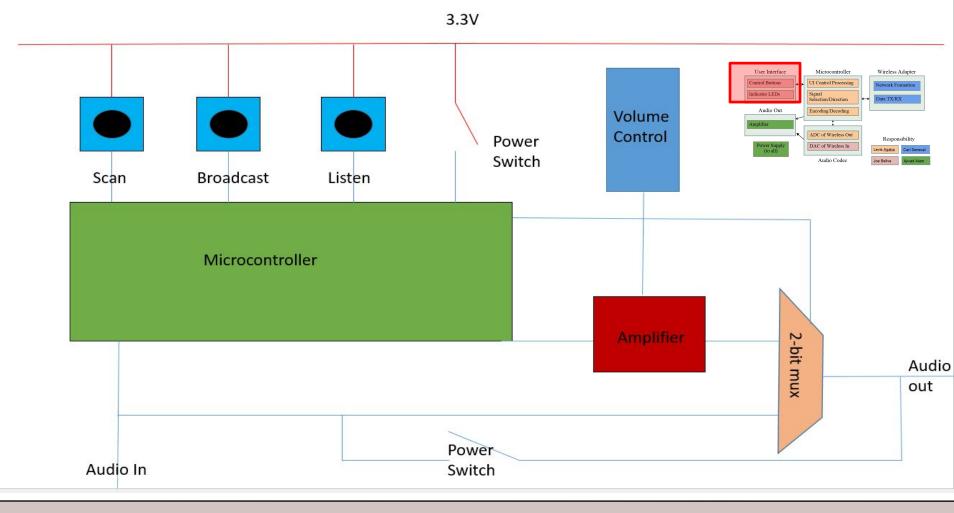
Our Solution: Original Block Diagram

Revised Block Diagram

Overall System Requirements

Portability	 Containment within normal headset 								
Ease of Use	 Clear controls and indicators 								
 Battery At least 4 hours of charge Rechargeable via a standard connector (USB) 									
Concurrent Use • Minimum 3 users, ideally 10+									
Range	 100 foot radius for use on public transit 								
Network Operation	No Internet connectionStandard legal frequency								
Streaming	 Minimum 192 kbps audio quality 								
Quality	 No noticeable drops/stuttering in playback 								
	 Near-synchronous listening 								

MDR Requirements


- Demonstrate persistent communication between two boards
- Demonstrate switch functionality
- Demonstrate amplifier with volume control functionality

Subsystem 1: User Interface

Requirements

Ease of Use	 Clear controls and indicators 						
 User control Allow the user to customize listening experier 							
Size	 Need to occupy a little footprint in terms of hardware space 						
Power	 Use as little power as possible to increase battery length 						
Analog • Low input resistance <100Ω							
Multiplexer • Voltage range between -1V and 1 V							

User Interface: Detailed Block Diagram

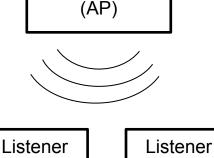
Department of Electrical and Computer Engineering

User Interface

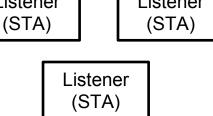
- The user interface implemented uses two buttons on the Microcontroller to switch the modes
- These buttons worked as a GPIO interrupt
- Triggered on the falling edge
- The buttons are also tied to pins, 2 and 15

Subsystem 2: Networking

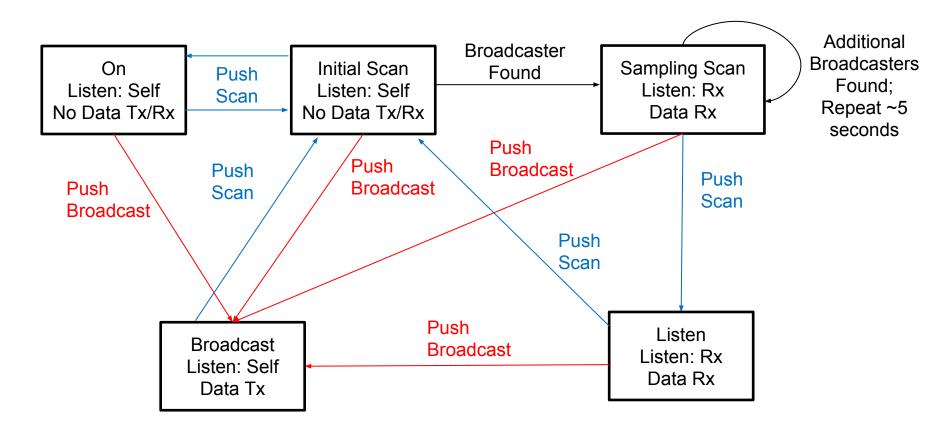
• Requirements:


Concurrent Use	 Minimum 3 users, ideally 10+
Range	 100 foot radius for use on public transit
Network Operation	 No Internet connection Standard legal frequency
Streaming Quality	 Minimum 192 kbps audio quality No noticeable drops/stuttering in playback Near-synchronous listening

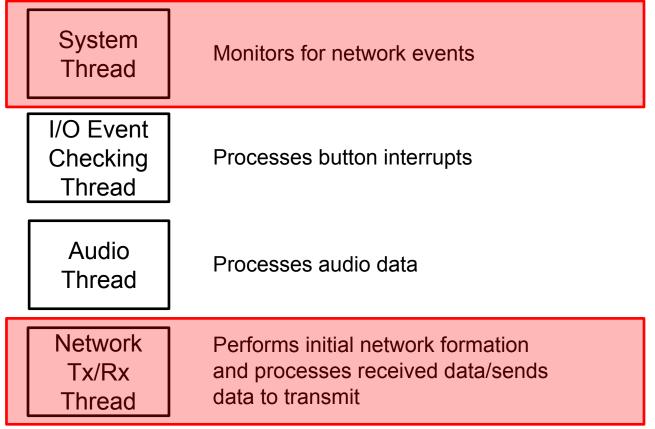
Networking


- Initial attempt with WiFi Direct was unsuccessful due to device limitations and difficulty with API
- Networking is accomplished via WiFi Access Point/Station model
- Broadcaster acts as Access Point
- Listener acts as Station

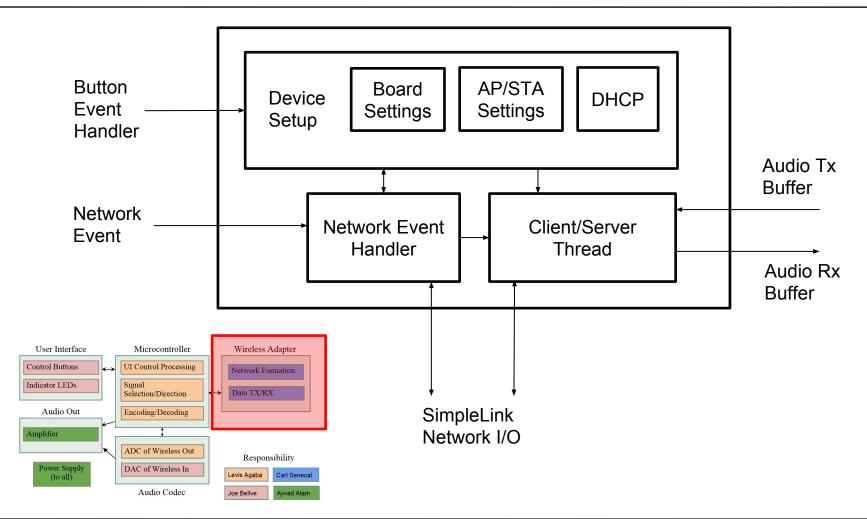
I MassAmherst


- Listeners scan for SSIDs that match a particular pattern and attempt to connect
- Broadcasters accept any Listener
- Data transmission via UDP

Broadcaster



State Diagram



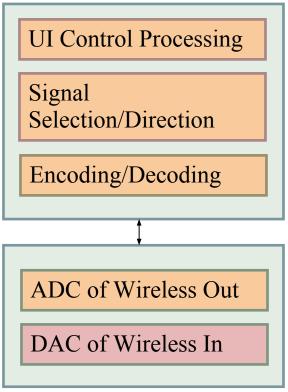
General Code Structure

Concurrent threads and interrupts/interrupt handlers

Networking Block Diagram

Department of Electrical and Computer Engineering

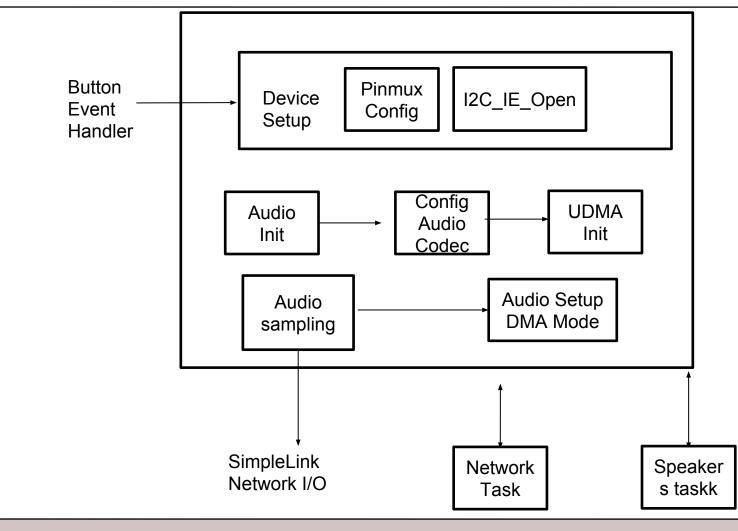
UI and Networking Demo


- MDR Requirement (UI): Working buttons
- MDR Requirement (Networking): Demonstrate communication between two boards
- Each board runs the same code (symmetric)
- One button starts broadcaster mode
- Second button starts receiver mode
- Use UART to type in a message to send
- UDP client sends messages to server 1000 times

Networking: Future Expansion

- Multiple listeners associated with a single access point
- Use of Broadcast/Multicast to allow for multiple listeners on the same broadcaster
- Standardization of access point naming and connection procedure

Subsystem 3: MCU/Signal Processing


Microcontroller

Audio Codec

- Requirements: Process audio at 192kbps
- Handles signal selection (line in vs. received audio)
- Acts as intermediary between received data buffers and audio out

Subsystem 3: Block Diagram

Department of Electrical and Computer Engineering

DAC

- 100dB signal to noise ratio
- 48 kHz sampling, 24 bits
- PCM format
- Requires ~1.2 Mbps transfer rate for audio signal
- THD: 0.005% ADC, 0.007% DAC

Subsystem 4: Amplification

Requirements:

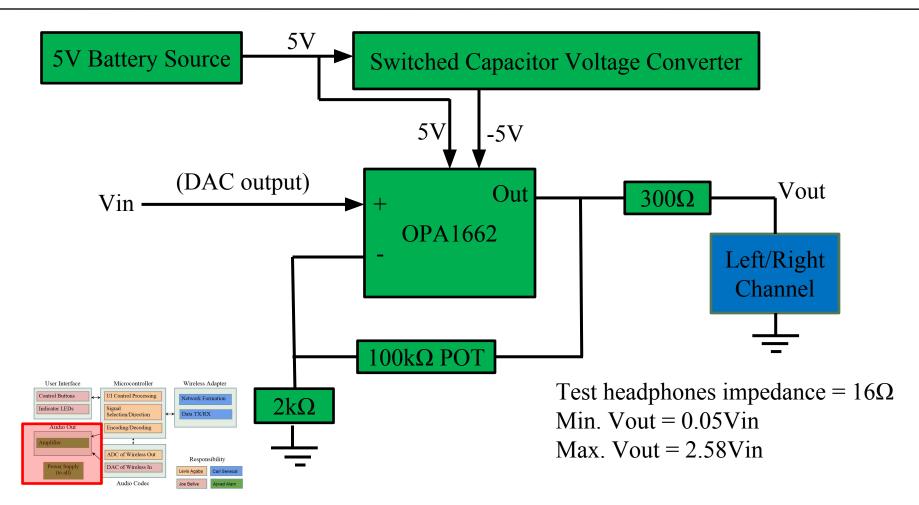
Low power

Low noise

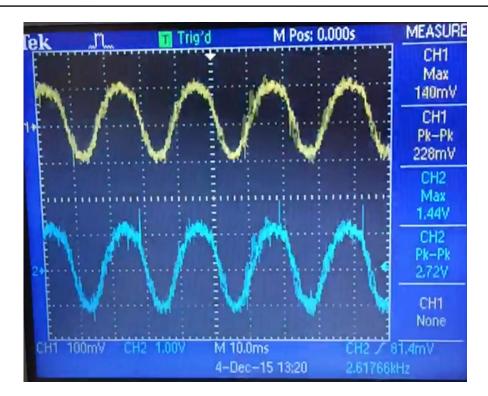
High slew rate [\geq 2.56 V/µs]

Small size [SMD Package]

• Accomplished:


High frequency hiss minimized Good replication of audio signal

Low Distortion: 0.00006% at 1 kHz THD+N \rightarrow -124 dB Slew rate = 17 V/µs



Amplification Block Diagram

Test Results

- Channel 1: Input audio signal
- Channel 2: Amplified audio signal
- Challenge:
- Tradeoff between gain and noise

Cost Analysis

Parts	Quantity	shipping costs	price	price for all			
CC3200 Wireless MCU	3	\$6.25	\$36.00				
Rechargeable batteries	3	\$6.25	\$29.70				
Monoprice headphones	3	\$6.25	\$53.94				
Resistors	6.	\$2.00	\$0.90				
Capacitors	9	\$2.00	\$0.30	\$2.70			
Potentiometers	3	\$2.00	\$0.72	\$2.16			
Opamp	2	\$2.00	\$1.78	\$5.34			
CC3200AUDBOOST	3	\$6.25	\$87.00				
Switch capacitor voltage convertor	3	\$2.00	\$2.38	\$7.14			
Voltage regulator 3.3v	3	\$2.00	\$1.95	\$5.85			
Switches and buttons	12	\$2.00	\$3.50	\$42.00			
Totals		\$39.00	\$79.66	\$228.60			

Timeline and CDR Deliverables

----CDR------

- Multiple person groups and multicast
 Carl
- Convert input analog audio signal to digital Joe
- Convert received digital audio signal to analog Levis
- Power supply to other subsystems & analysis AJ

---FDR-----

- Integration
- PCB design
- Housing within Headphones

Gant Chart

4	А	D	L L	U	E	F	G	п			. mu	HIN				mill		muu	mme	
	WBS	Tasks	Task Lead	Start	End	Duration (Days)	% Complete	Working Days	Days Complete	Days Remaining	28 - Dec - 15	04 - Jan - 16	- Jan -	- Jan - 1	- Jan -	- Feb - 1 	15 - Feb - 16	- Feb - 1	1	- Mar - 1
0		Multiple person Groups	Carl	1/27/16	3/4/16	38	0%	28	0	38										
11	1.1	Adding more stations to access point			1/31/16	5	0%	3	0	5							_			
	1.2	Implementing broadcast to all connected stations			2/11/16	5	0%	4	0	5										
3	1.2.1				2/14/16	5	0%	3	0	5										
4	1.2.2 1.3 1.4 2				2/22/16	5	0%	3	0	5	п							۰.	-	
5	1.3				2/29/16	5	0%	3	0	5	μ.									
6	1.4			2/29/16	3/4/16	5	0%	5	0	5					-		_	_		-
1	2	Convert input audio signal to digital	Joe		2/29/16	34	25%	24	8	26							-		-	
8		Research			2/11/16	5	25%	4	1	4										
	2.2	Example project working			2/14/16	5	25%	3	1	4						1				
	2.3	Tests			2/22/16	5	25%	3	1	4							_	۰.	-	
21	2.4	Sub Task level 2	200927		2/29/16	5	25%	3	1	4					-		-	_		
2	3 3.1 3.2 3.3	Convert received digital audio signal to analog	Levis	1/27/16	3/1/16	35	50%	25	17	18										
23	3.1	Research			2/12/16	6	50%	5	3	3						_				
24	3.2	Example project working			2/15/16	6	50%	4	3	3						_				
25	3.3	Implementing DAC algorithm			2/23/16	6	50%	4	3	3							_	а,	-	
	3.4	Implementing & testing reconstruction methods		2/25/16	3/1/16	6	50%	4	3	3					-		_			
	4	Power supply	Ajwad Alam		2/29/16	34	0%	24	0	34					-	- 616	902 -			
10 million (10 million)	4.1	Measurements			2/11/16	5	0%	4	0	5						7				
	4.2	Design voltage regulator			2/14/16	5	0%	3	0	5								_		
30	4.3	Test			2/22/16	5	0%	3	0	5									_	
31	4.4			2/25/16	2/29/16	5	0%	3	0	5										

Thank You

Questions?

Department of Electrical and Computer Engineering